Descripteur
Documents disponibles dans cette catégorie (10)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
[article]
Titre : Street-view imagery guided street furniture inventory from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yuzhou Zhou, Auteur ; Xu Han, Auteur ; Mingjun Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Streetview
[Termes IGN] instance
[Termes IGN] inventaire
[Termes IGN] jeu de données localisées
[Termes IGN] masque
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] séparateur à vaste marge
[Termes IGN] Shanghai (Chine)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Outdated or sketchy inventory of street furniture may misguide the planners on the renovation and upgrade of transportation infrastructures, thus posing potential threats to traffic safety. Previous studies have taken their steps using point clouds or street-view imagery (SVI) for street furniture inventory, but there remains a gap to balance semantic richness, localization accuracy and working efficiency. Therefore, this paper proposes an effective pipeline that combines SVI and point clouds for the inventory of street furniture. The proposed pipeline encompasses three steps: (1) Off-the-shelf street furniture detection models are applied on SVI for generating two-dimensional (2D) proposals and then three-dimensional (3D) point cloud frustums are accordingly cropped; (2) The instance mask and the instance 3D bounding box are predicted for each frustum using a multi-task neural network; (3) Frustums from adjacent perspectives are associated and fused via multi-object tracking, after which the object-centric instance segmentation outputs the final street furniture with 3D locations and semantic labels. This pipeline was validated on datasets collected in Shanghai and Wuhan, producing component-level street furniture inventory of nine classes. The instance-level mean recall and precision reach 86.4%, 80.9% and 83.2%, 87.8% respectively in Shanghai and Wuhan, and the point-level mean recall, precision, weighted coverage all exceed 73.7%. Numéro de notice : A2022-403 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.04.023 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100711
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 63 - 77[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Détection/reconnaissance d'objets urbains à partir de données 3D multicapteurs prises au niveau du sol, en continu / Younes Zegaoui (2021)
Titre : Détection/reconnaissance d'objets urbains à partir de données 3D multicapteurs prises au niveau du sol, en continu Type de document : Thèse/HDR Auteurs : Younes Zegaoui, Auteur ; Marc Chaumont, Directeur de thèse Editeur : Montpellier : Université de Montpellier Année de publication : 2021 Importance : 182 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour obtenir le grade de Docteur de l'Université de Montpellier, spécialité InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] mobilier urbain
[Termes IGN] objet géographique urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone urbaine denseIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le développement des dispositifs d'acquisition LiDAR mobiles terrestres, montés sur véhicule ou drone, rendent possible la numérisation de villes entières sous la forme de nuages de points tridimensionnels géo-référencés. L'exploitation de ces données par les gestionnaires de ville permettent le recensement ainsi que le suivi au cours du temps des objets urbains qu'ils soient fixes (lampadaires, abribus…), mobiles (containers de poubelle) ou naturels (arbres) afin de pouvoir intervenir en cas de disparition, déplacement, détérioration ou de danger potentiel. Cette approche nécessite d'être en mesure de traiter des grands nuages pouvant compter plusieurs centaines de millions de points et réunir des milliers d'objets. Il devient donc nécessaire d'automatiser les traitements appliqués aux nuages de points afin de pouvoir extraire et classer automatiquement les éléments qui correspondent à des objets urbains. La diversité ainsi que le grand nombre d'objets urbains présents dans les villes sont un réel défi pour le développement d'approches automatisées. Dans cette thèse, nous explorons la piste récente de l'apprentissage profond appliqué aux données non structurées pour réaliser la localisation et la reconnaissance automatique d'objets urbains dans un nuage de points 3D. En s'inspirant des avancées récentes permises par le réseau PointNet, nous proposons de réaliser un apprentissage supervisé directement à partir des nuages de points sans passer par des transformations intermédiaires. Nous avons ainsi développé une architecture neuronale 3D que nous avons basée sur une couche originale permettant simultanément de regrouper des points et d'en extraire des caractéristiques. A partir de cette architecture, nous présentons les résultats que nous avons obtenues sur la tâche de détection d'objets urbains dans des nuages de points LiDAR obtenus dans des rues de grandes villes. Note de contenu : 1- Introduction
2- Etat de l’art
3- Architecture par clustering
4- Application à la détection d’objets en milieu urbain
5- Conclusion
6- PerspectivesNuméro de notice : 24108 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de Doctorat : Informatique : Montpellier : 2021 Organisme de stage : Laboratoire LIRMM DOI : sans En ligne : https://tel.hal.science/tel-03589031/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100629
Titre : Learning to map street-side objects using multiple views Type de document : Thèse/HDR Auteurs : Ahmed Samy Nassar, Auteur ; Sébastien Lefèvre, Directeur de thèse ; Jan Dirk Wegner, Directeur de thèse Editeur : Vannes : Université de Bretagne Sud Année de publication : 2021 Importance : 139 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Bretagne Sud, spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] cartographie par internet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données multisources
[Termes IGN] estimation de pose
[Termes IGN] géolocalisation
[Termes IGN] graphe
[Termes IGN] image Streetview
[Termes IGN] inventaire
[Termes IGN] mobilier urbain
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Creating inventories of street-side objects and their monitoring in cities is a labor-intensive and costly process. Field workers are known to conduct this process on-site to record properties about the object. These properties can be the location, species, height, and health of a tree as an example. To monitor cities, gathering such information on a large scale becomes challenging. With the abundance of imagery, adequate coverage of a city is achieved from different views provided by online mapping services (e.g., Google Maps and Street View, Mapillary). The availability of such imagery allows efficient creation and updating of inventories of street-side objects status by using computer vision methods such as object detection and multiple object tracking. This thesis aims at detecting and geo-localizing street-side objects, especially trees and street signs, from multiple views using novel deep learning methods. Note de contenu : 1- Introduction
2- Background
3- Multi-view instance matching with learned geometric soft-constraints
4- Simultaneous multi-view instance detection with learned geometric softconstraints
5- GeoGraphV2: Graph-based aerial & street view multi-view object detection with geometric cues end-to-end
6- ConclusionNuméro de notice : 28674 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Université de Bretagne Sud : 2021 Organisme de stage : IRISA DOI : sans En ligne : https://hal.science/tel-03523658 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99920 Semiautomatically register MMS LiDAR points and panoramic image sequence using road lamp and lane / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)
[article]
Titre : Semiautomatically register MMS LiDAR points and panoramic image sequence using road lamp and lane Type de document : Article/Communication Auteurs : Ningning Zhu, Auteur ; Yonghong Jia, Auteur ; Xia Huang, Auteur Année de publication : 2019 Article en page(s) : pp 829 - 840 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] éclairage public
[Termes IGN] extraction de points
[Termes IGN] image panoramique
[Termes IGN] mobilier urbain
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] transformation linéaire directeRésumé : (Auteur) We propose using the feature points of road lamp and lane to register mobile mapping system (MMS) LiDAR points and panoramic image sequence. Road lamp and lane are the common objects on roads; the spatial distributions are regular, and thus our registration method has wide applicability and high precision. First, the road lamp and lane were extracted from the LiDAR points by horizontal grid and reflectance intensity and then by optimizing the endpoints as the feature points of road lamp and lane. Second, the feature points were projected onto the panoramic image by initial parameters and then by extracting corresponding feature points near the projection location. Third, the direct linear transformation method was used to solve the registration model and eliminate mismatching feature points. In the experiments, we compare the accuracy of our registration method with other registration methods by a sequence of panoramic images. The results show that our registration method is effective; the registration accuracy of our method is less than 10 pixels and averaged 5.84 pixels in all 31 panoramic images (4000 × 8000 pixels), which is much less than that of the 56.24 pixels obtained by the original registration method. Numéro de notice : A2019-525 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.14358/PERS.85.11.829 Date de publication en ligne : 01/11/2019 En ligne : https://doi.org/10.14358/PERS.85.11.829 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94062
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 11 (November 2019) . - pp 829 - 840[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019111 RAB Revue Centre de documentation En réserve L003 Disponible Semantic segmentation of road furniture in mobile laser scanning data / Fashuai Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Semantic segmentation of road furniture in mobile laser scanning data Type de document : Article/Communication Auteurs : Fashuai Li, Auteur ; Matti Lehtomäki, Auteur ; Sander J. Oude Elberink, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 98 - 113 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Road furniture recognition has become a prevalent issue in the past few years because of its great importance in smart cities and autonomous driving. Previous research has especially focussed on pole-like road furniture, such as traffic signs and lamp posts. Published methods have mainly classified road furniture as individual objects. However, most road furniture consists of a combination of classes, such as a traffic sign mounted on a street light pole. To tackle this problem, we propose a framework to interpret road furniture at a more detailed level. Instead of being interpreted as single objects, mobile laser scanning data of road furniture is decomposed in elements individually labelled as poles, and objects attached to them, such as, street lights, traffic signs and traffic lights. In our framework, we first detect road furniture from unorganised mobile laser scanning point clouds. Then detected road furniture is decomposed into poles and attachments (e.g. traffic signs). In the interpretation stage, we extract a set of features to classify the attachments by utilising a knowledge-driven method and four representative types of machine learning classifiers, which are random forest, support vector machine, Gaussian mixture model and naïve Bayes, to explore the optimal method. The designed features are the unary features of attachments and the spatial relations between poles and their attachments. Two experimental test sites in Enschede dataset and Saunalahti dataset were applied, and Saunalahti dataset was collected in two different epochs. In the experimental results, the random forest classifier outperforms the other methods, and the overall accuracy acquired is higher than 80% in Enschede test site and higher than 90% in both Saunalahti epochs. The designed features play an important role in the interpretation of road furniture. The results of two epochs in the same area prove the high reliability of our framework and demonstrate that our method achieves good transferability with an accuracy over 90% through employing the training data of one epoch to test the data in another epoch. Numéro de notice : A2019-266 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.001 Date de publication en ligne : 08/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93081
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 98 - 113[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt PermalinkSemiautomated extraction of street light poles from mobile LiDAR point-clouds / Yongtao Yu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)PermalinkModalités de représentation en 3D de données issues du SIG2D, pour la conception et la simulation / Olivier Jest (2015)PermalinkAn algorithm for automatic detection of pole-like street furniture objects from Mobile Laser Scanner point clouds / C. Cabo in ISPRS Journal of photogrammetry and remote sensing, vol 87 (January 2014)PermalinkLe Système d'Information Géographique (SIG) au service de la réglementation sur la publicité extérieure / Aristide Jasper Mban (2012)Permalink