Descripteur
Documents disponibles dans cette catégorie (14)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
SNR-based water height retrieval in rivers: Application to high amplitude asymmetric tides in the Garonne river / Pierre Zeiger in Remote sensing, vol 13 n° 9 (May-1 2021)
[article]
Titre : SNR-based water height retrieval in rivers: Application to high amplitude asymmetric tides in the Garonne river Type de document : Article/Communication Auteurs : Pierre Zeiger, Auteur ; Frédéric Frappart, Auteur ; José Darrozes, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1856 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] crue
[Termes IGN] filtrage du bruit
[Termes IGN] Garonne (bassin)
[Termes IGN] interférence
[Termes IGN] marée océanique
[Termes IGN] modèle d'inversion
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectométrie par GNSS
[Termes IGN] série temporelle
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) Signal-to-noise ratio (SNR) time series acquired by a geodetic antenna were analyzed to retrieve water heights during asymmetric tides on a narrow river using the Interference Pattern Technique (IPT) from Global Navigation Satellite System Reflectometry (GNSS-R). The dynamic SNR method was selected because the elevation rate of the reflecting surface during rising tides is high in the Garonne River with macro tidal conditions. A new process was developed to filter out the noise introduced by the environmental conditions on the reflected signal due to the narrowness of the river compared to the size of the Fresnel areas, the presence of vegetation on the river banks, and the presence of boats causing multiple reflections. This process involved the removal of multipeaks in the Lomb-Scargle Periodogram (LSP) output and an iterative least square estimation (LSE) of the output heights. Evaluation of the results was performed against pressure-derived water heights. The best results were obtained using all GNSS bands (L1, L2, and L5) simultaneously: R = 0.99, ubRMSD = 0.31 m. We showed that the quality of the retrieved heights was consistent, whatever the vertical velocity of the reflecting surface, and was highly dependent on the number of satellites visible. The sampling period of our solution was 1 min with a 5-min moving window, and no tide models or fit were used in the inversion process. This highlights the potential of the dynamic SNR method to detect and monitor extreme events with GNSS-R, including those affecting inland waters such as flash floods. Numéro de notice : A2021-406 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs13091856 Date de publication en ligne : 10/05/2021 En ligne : https://doi.org/10.3390/rs13091856 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97722
in Remote sensing > vol 13 n° 9 (May-1 2021) . - n° 1856[article]Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation / Eslam Ali in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation Type de document : Article/Communication Auteurs : Eslam Ali, Auteur ; Wenbin Xu, Auteur ; Xiao-Li Ding, Auteur Année de publication : 2020 Article en page(s) : pp 106 - 124 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] correction des ombres
[Termes IGN] COSI-Corr
[Termes IGN] déplacement d'objet géographique
[Termes IGN] désert
[Termes IGN] désertification
[Termes IGN] données météorologiques
[Termes IGN] dune
[Termes IGN] image Landsat-8
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] incertitude des données
[Termes IGN] modèle d'inversion
[Termes IGN] modèle dynamique
[Termes IGN] prévention des risques
[Termes IGN] sable
[Termes IGN] série temporelle
[Termes IGN] Sinai
[Termes IGN] variation saisonnière
[Termes IGN] vent de sableRésumé : (auteur) Sand dune migration poses a potential threat to desert infrastructure, vegetation, and atmospheric conditions. Capturing the patterns of long-term dune migration is useful for predicting probable desertification issues and wind conditions across vast desert areas. In this study, we employed optical image matching and a singular value decomposition approach to estimate the rates of dune migration in the North Sinai Sand Sea using the free Landsat 8 and Sentinel-2 archives. Our optical image matching time-series selection and inversion (OPTSI) algorithm limited the difference in the solar illumination of correlated pairs to decrease shadows and seasonal variability. We found that the maximum annual dune migration rates were 9.4 m/a and 15.9 m/a for Landsat 8 and Sentinel-2 data, respectively, and the results of time-series analysis revealed the existence of seasonal variations in dune migration controlled by wind regimes. The directions of sand movement extracted from the mean velocity solution agreed strongly with each other and with the drift directions estimated using wind data from meteorological stations. We assessed the uncertainty of each solution based on the variance of stable areas. Our results showed that the proposed inversion decreased uncertainty by up to 25% and increased the spatial coverage by up to 20%. This algorithm is also promising for the retrieval of historical time series on the ground displacements of glaciers and slow-moving landslides employing free archives that provide high-frequency images. Numéro de notice : A2020-253 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.004 Date de publication en ligne : 27/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94997
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 106 - 124[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Bayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Bayesian inversion of convolved hidden Markov models with applications in reservoir prediction Type de document : Article/Communication Auteurs : Torstein Fjeldstad, Auteur ; Henning Omre, Auteur Année de publication : 2020 Article en page(s) : pp 1957 - 1968 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] amplitude
[Termes IGN] analyse mathématique
[Termes IGN] approximation
[Termes IGN] chaîne de Markov
[Termes IGN] filtrage numérique d'image
[Termes IGN] lithologie
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle d'inversion
[Termes IGN] modèle mathématique
[Termes IGN] processus gaussien
[Termes IGN] sismicitéRésumé : (Auteur) The efficient assessment of convolved hidden Markov models is discussed. The bottom layer is defined as an unobservable categorical first-order Markov chain, whereas the middle layer is assumed to be a Gaussian spatial variable conditional on the bottom layer. Hence, this layer appears marginally as a Gaussian mixture spatial variable. We observe the top layer as a convolution of the middle layer with Gaussian errors. The focus is on assessing the categorical and Gaussian mixture variables given the observations, and we operate in a Bayesian inversion framework. The model is defined to perform the inversion of subsurface seismic amplitude-versus-offset data into lithology/fluid classes and to assess the associated seismic material properties. Due to the spatial coupling in the likelihood functions, evaluation of the posterior normalizing constant is computationally demanding, and brute-force, single-site updating Markov chain Monte Carlo (MCMC) algorithms converge far too slowly to be useful. We construct two classes of approximate posterior models, which we assess analytically and efficiently using the recursive forward–backward algorithm. These approximate posterior densities are used as proposal densities in an independent proposal MCMC algorithm to determine the correct posterior model. A set of synthetic realistic examples is presented. The proposed approximations provide efficient proposal densities, which results in acceptance probabilities in the range 0.10–0.50 in the MCMC algorithm. A case study of lithology/fluid seismic inversion is presented. The lithology/fluid classes and the seismic material properties can be reliably predicted. Numéro de notice : A2020-093 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2951205 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2951205 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94667
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1957 - 1968[article]Soil roughness retrieval from TerraSar-X data using neural network and fractal method / Mohammad Maleki in Advances in space research, vol 64 n°5 (1 September 2019)
[article]
Titre : Soil roughness retrieval from TerraSar-X data using neural network and fractal method Type de document : Article/Communication Auteurs : Mohammad Maleki, Auteur ; Jalal Amini, Auteur ; Claudia Notarnicola, Auteur Année de publication : 2019 Article en page(s) : pp 1117-1129 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse fractale
[Termes IGN] bande X
[Termes IGN] équation intégrale
[Termes IGN] image TerraSAR-X
[Termes IGN] modèle d'inversion
[Termes IGN] modèle numérique de terrain
[Termes IGN] Perceptron multicouche
[Termes IGN] polarimétrie radar
[Termes IGN] rugosité du solRésumé : (auteur) The purpose of this study is to estimate the surface roughness (rms) using TerraSar-X data in HH polarization. Simulation of data is carried out at a wide range of moisture and roughness using the Integral Equation Model (IEM). The inversion method is based on Multi-Layer Perceptron neural network. Inversion technique is performed in two steps. In the first step, the neural network is trained using synthetic data. The inputs of the first neural network are the backscattering coefficient and incidence angle, and the moisture is the output. In the next step, three neural networks are built based on a prior and without prior information on roughness. The inputs of three neural network are backscattering coefficient, estimated moisture in the first step and incidence angle and the roughness is output. The validation of the proposed methods is carried out based on synthetic and real data. Ground roughness measurements are extracted from Digital Terrain Model (DTM) using the fractal method. The accuracy of moisture from synthetic data is 6.1 vol% without prior information on moisture and roughness. The roughness (rms) accuracy of synthetic datasets is 0. 61 cm without prior information and is 0.31 cm and 0.38 cm for rms lower than 2 cm and rms between 2 and 4 cm, with prior information on roughness. The result's analysis of the simulated data showed that the prior information on roughness strongly improves the accuracy of roughness and moisture estimates. The accuracy of rms estimates for the TerraSar-X image in the HH polarization is about 0.9 cm in the case of no prior information on roughness. The accuracy improves to 0.57 cm for rms lower than 2 cm and 0.54 cm for rms between 2 and 4 cm with prior information on roughness. An overestimation of rms for rms lower than 2 cm and an underestimation of rms for rms higher than 2 cm are observed. The results of the accuracy of the synthetic and real data showed that the X band in HH polarization has a very good potential to estimate the soil roughness. Numéro de notice : A2019-411 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2019.04.019 Date de publication en ligne : 24/04/2019 En ligne : https://doi.org/10.1016/j.asr.2019.04.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93527
in Advances in space research > vol 64 n°5 (1 September 2019) . - pp 1117-1129[article]Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model / Roshanak Darvishzadeh in International journal of applied Earth observation and geoinformation, vol 79 (July 2019)
[article]
Titre : Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model Type de document : Article/Communication Auteurs : Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; Haidi Abdullah, Auteur ; Elias Cherenet, Auteur Année de publication : 2019 Article en page(s) : pp 58-70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse multibande
[Termes IGN] bande rouge
[Termes IGN] bande spectrale
[Termes IGN] Bavière (Allemagne)
[Termes IGN] canopée
[Termes IGN] carte de la végétation
[Termes IGN] image RapidEye
[Termes IGN] image Sentinel-MSI
[Termes IGN] modèle d'inversion
[Termes IGN] Picea abies
[Termes IGN] réflectance végétale
[Termes IGN] spectrophotométrie
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Leaf chlorophyll plays an essential role in controlling photosynthesis, physiological activities and forest health. In this study, the performance of Sentinel-2 and RapidEye satellite data and the Invertible Forest Reflectance Model (INFORM) radiative transfer model (RTM) for retrieving and mapping of leaf chlorophyll content in the Norway spruce (Picea abies) stands of a temperate forest was evaluated. Biochemical properties of leaf samples as well as stand structural characteristics were collected in two subsequent field campaigns during July 2015 and 2016 in the Bavarian Forest National Park (BFNP), Germany, parallel with the timing of the RapidEye and Sentinel-2 images. Leaf chlorophyll was measured both destructively and nondestructively using wet chemical spectrophotometry analysis and a hand-held chlorophyll content meter. The INFORM was utilised in the forward mode to generate two lookup tables (LUTs) in the spectral band settings of RapidEye and Sentinel-2 data using information obtained from the field campaigns. Before generating the LUTs, the sensitivity of the model input parameters to the spectral data from RapidEye and Sentinel-2 were examined. The canopy reflectance of the studied plots were obtained from the satellite images and used as input for the inversion of LUTs. The coefficient of determination (R2), root mean square errors (RMSE), and the normalised root mean square errors (NRMSE), between the retrieved and measured leaf chlorophyll, were then used to examine the attained results from RapidEye and Sentinel-2 data, respectively. The use of multiple solutions and spectral subsets for the inversion process were further investigated to enhance the retrieval accuracy of foliar chlorophyll. The result of the sensitivity analysis demonstrated that the simulated canopy reflectance of Sentinel-2 is sensitive to the alternation of all INFORM input parameters, while the simulated canopy reflectance from RapidEye did not show sensitivity to leaf water content variations. In general, there was agreement between the simulated and measured reflectance spectra from RapidEye and Sentinel-2, particularly in the visible and red-edge regions. However, examining the average absolute error from the simulated and measured reflectance revealed a large discrepancy in spectral bands around the near-infrared shoulder. The relationship between retrieved and measured leaf chlorophyll content from the Sentinel-2 data had a higher coefficient of determination with a higher NRMSE (NRMSE = 0.36 μg/cm2, R2 = 0.45) compared to those obtained using the RapidEye data (NRMSE = 0.31 μg/cm2 and R2 = 0.39). Using the mean of the ten best solutions (retrieved chlorophyll) the retrieval error for both Sentinel-2 and RapidEye data decreased (NRMSE = 0.34, NRMSE = 0.26, respectively), as compared to only selecting the single best solution. When the Sentinel-2 red edge bands were used as the spectral subset, the retrieval error of leaf chlorophyll decreased indicating the importance of red edge, as well as properly located spectral bands, for leaf chlorophyll estimation. The chlorophyll maps produced by the inversion of the two LUTs effectively represented the variation of foliar chlorophyll in BFNP and confirmed our earlier findings on the observed stress pattern caused by insect infestation. Our findings emphasise the importance of multispectral satellites which benefits from red edge spectral bands such as Sentinel-2 as well as RapidEye for regional mapping of vegetation foliar properties, particularly, chlorophyll using RTMs such as INFORM. Numéro de notice : A2019-460 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.03.003 Date de publication en ligne : 08/03/2019 En ligne : https://doi.org/10.1016/j.jag.2019.03.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93577
in International journal of applied Earth observation and geoinformation > vol 79 (July 2019) . - pp 58-70[article]Modélisation spatiale des températures dans le vignoble des coteaux du Layon / Cyril Bonnefoy in Revue internationale de géomatique, vol 24 n° 3 (septembre - novembre 2014)PermalinkEstimation de la réflectance de matériaux d'une scène urbaine : modélisation et méthode d'inversion / Fabien Coubard in Revue Française de Photogrammétrie et de Télédétection, n° 194 (Mai 2011)PermalinkSnow permitivity retrieval inversion algorithm for estimating snow wetness / G. Singh in Geocarto international, vol 25 n° 3 (June 2010)PermalinkAutomated derivation of bathymetric information from multi-spectral satellite imagery using a non-linear inversion model / H. Su in Marine geodesy, vol 31 n° 4 (December 2008)PermalinkLAI retrieval from multiangular image classification and inversion of a ray tracing model / R. Casa in Remote sensing of environment, vol 98 n° 4 (30/10/2005)PermalinkEtude phénoménologique du transfert radiatif en milieu urbain : Dimensionnement d'une campagne aéroportée sur Toulouse pour la détermination des réflectances de surface / Sophie Lacherade in Revue Française de Photogrammétrie et de Télédétection, n° 176 (Décembre 2004)PermalinkModèle de nuage pour la restitution de paramètres microphysiques à partir de données satellitaires micro-ondes / Nathalie Dejour (1997)PermalinkContribution à la résolution du problème du pixel mixte en vue de l'amélioration de l'estimation de la productivité primaire nette en zone sahélienne (couplage haute et basse résolution spatiale) / Selma Cherchali (1995)PermalinkEstimation de l'albédo de surface à l'échelle globale, à l'aide de mesures satellitaires / François Cabot (1995)Permalink