Descripteur
Documents disponibles dans cette catégorie (37)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services / Mingyue Xu in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services Type de document : Article/Communication Auteurs : Mingyue Xu, Auteur ; Peng Yue, Auteur ; Fan Yu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 380 - 402 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] appariement de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] autopartage
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] interaction humain-espace
[Termes IGN] modèle de Markov
[Termes IGN] système d'information urbain
[Termes IGN] système multi-agents
[Termes IGN] taxi
[Termes IGN] transmission de données
[Termes IGN] zone d'activité économiqueRésumé : (auteur) The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income. Numéro de notice : A2023-058 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2119477 Date de publication en ligne : 07/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2119477 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102396
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 380 - 402[article]Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia / Medria Shekar Rani in International journal of geographical information science IJGIS, vol 36 n° 12 (December 2022)
[article]
Titre : Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia Type de document : Article/Communication Auteurs : Medria Shekar Rani, Auteur ; Ross Cameron, Auteur ; Olaf Schrott, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2549 - 2562 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] changement d'occupation du sol
[Termes IGN] Java (île de)
[Termes IGN] mise à jour
[Termes IGN] modèle de Markov
[Termes IGN] modélisation spatiale
[Termes IGN] Perceptron multicoucheRésumé : (auteur) In developing countries, data gaps are common and lead to uncertainties in land cover change analysis. This study demonstrates how to mitigate uncertainties in modeling land change in the Ci Kapundung upper water catchment area by comparing the outcomes of two simulation phases. A conventional cellular automata (CA)–Markov model was complemented with a multilayer perceptron (MLP) to project future land cover maps in the study area. The CA–Markov–MLP model results in high uncertainties in forested sites where a data gap is apparent in the input data (land cover maps and driver variables) and parameters. The results show that the model accuracy is improved from 47.90% in the first phase to 81.36% in the second phase. Both first and second phases integrate six demographic–economic and environmental drivers in the modeling, but the second phase also incorporates an updating and backdating analysis to revise the base-maps. This study suggests that uncertainties can be mitigated by linking such base-map revision process with the updating and backdating analyses using remote sensing datasets retrieved at different times. Numéro de notice : A2022-845 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103820 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103820 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102076
in International journal of geographical information science IJGIS > vol 36 n° 12 (December 2022) . - pp 2549 - 2562[article]Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model / Hasan Aksoy in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model Type de document : Article/Communication Auteurs : Hasan Aksoy, Auteur ; Sinan Kaptan, Auteur Année de publication : 2022 Article en page(s) : pp 1183 - 1202 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] gestion forestière
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de Markov
[Termes IGN] occupation du sol
[Termes IGN] surface cultivée
[Termes IGN] surface forestière
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (auteur) This study aimed to simulate and assess forest cover and land use/land cover (LULC) changes between 2019 and 2039 using the cellular automata-Markov model. The performance of the model was evaluated by comparing the 2019 simulation map with the 2019 supervised classified map, and it was found to be reliable, with a similarity rate of 85.43%. The LULC analysis and estimates were carried out for a total of six classes: coniferous, broad-leaf, mixed forest, settlement, water and agriculture. Between 1999 and 2019, the areas of total forest increased by 17.4%, settlement by 84.6% and water by 20.1%, whereas the agriculture area decreased by 33.2%. According to 2019‒2039 land use/cover simulation results, there were decreases of 2.4% in total forest area and 3.7% in residential and water surface areas, but a 6.9% decrease in the agriculture class. Tracking these changes will contribute to decision making and strategy development efforts of forest planners and managers. Numéro de notice : A2022-397 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778102 Date de publication en ligne : 22/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778102 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100691
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1183 - 1202[article]Assessment and prediction of urban growth for a mega-city using CA-Markov model / Veerendra Yadav in Geocarto international, vol 36 n° 17 ([15/09/2021])
[article]
Titre : Assessment and prediction of urban growth for a mega-city using CA-Markov model Type de document : Article/Communication Auteurs : Veerendra Yadav, Auteur ; Sanjay Kumar Ghosh, Auteur Année de publication : 2021 Article en page(s) : pp 1960 - 1992 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] coefficient de corrélation
[Termes IGN] croissance urbaine
[Termes IGN] mégalopole
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] OpenStreetMap
[Termes IGN] Tamil Nadu (Inde ; état)
[Termes IGN] urbanisationRésumé : (auteur) Most of World’s mega-cities are facing high population growth. To accommodate the increased population, new built-up areas are emerging at the periphery or fringe area of cities. New urbanisation has an adverse impact on the existing Land Use Land Cover (LULC). To monitor and analyse the impact of urbanisation, LULC change analysis has become the primary concern for LULC monitoring agencies. In this study, LULC change of Chennai has been assessed during 1981–2011 using temporal Landsat data. All the dataset has been classified using Maximum Likelihood Classifier (MLC). Quantitative change in LULC has been carried out using Pearson’s Correlation Coefficient, Transition Potential Matrix, Land Use Dynamic Degree and MLC. Further, spatio-temporal change analysis has been performed using Post-classification comparison technique. Cellular Automata-Markov (CA-Markov) Model used for LULC prediction for 2021–2051. The urban area of Chennai has increased from 40.74 to 103.52 km2 during 1981–2011. Further, LULC prediction using the CA-Markov model shows that the urban area of Chennai district may increase from 103.52 to 140.79 km2 during 2011–2051. During the period 1981–2051, the prediction model indicates that mostly vegetation and barren land will be converted into urban land class. Numéro de notice : A2021-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2019.1690054 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1690054 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98507
in Geocarto international > vol 36 n° 17 [15/09/2021] . - pp 1960 - 1992[article]Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
[article]
Titre : Applying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh Type de document : Article/Communication Auteurs : Mohammad Emran Hasan, Auteur ; Biswajit Nath, Auteur ; A.H.M. Raihan Sarker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] automate cellulaire
[Termes IGN] Bangladesh
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] dégradation de l'environnement
[Termes IGN] détection de changement
[Termes IGN] gestion forestière durable
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] mangrove
[Termes IGN] modèle de Markov
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] réserve forestière
[Termes IGN] réserve naturelle
[Termes IGN] santé des forêts
[Termes IGN] série temporelle
[Termes IGN] système d'information géographiqueRésumé : (auteur) Overdependence on and exploitation of forest resources have significantly transformed the natural reserve forest of Sundarban, which shares the largest mangrove territory in the world, into a great degradation status. By observing these, a most pressing concern is how much degradation occurred in the past, and what will be the scenarios in the future if they continue? To confirm the degradation status in the past decades and reveal the future trend, we took Sundarban Reserve Forest (SRF) as an example, and used satellite Earth observation historical Landsat imagery between 1989 and 2019 as existing data and primary data. Moreover, a geographic information system model was considered to estimate land cover (LC) change and spatial health quality of the SRF from 1989 to 2029 based on the large and small tree categories. The maximum likelihood classifier (MLC) technique was employed to classify the historical images with five different LC types, which were further considered for future projection (2029) including trends based on 2019 simulation results from 1989 and 2019 LC maps using the Markov-cellular automata model. The overall accuracy achieved was 82.30%~90.49% with a kappa value of 0.75~0.87. The historical result showed forest degradation in the past (1989–2019) of 4773.02 ha yr−1, considered as great forest degradation (GFD) and showed a declining status when moving with the projection (2019–2029) of 1508.53 ha yr−1 and overall there was a decline of 3956.90 ha yr−1 in the 1989–2029 time period. Moreover, the study also observed that dense forest was gradually degraded (good to bad) but, conversely, light forest was enhanced, which will continue in the future even to 2029 if no effective management is carried out. Therefore, by observing the GFD, through spatial forest health quality and forest degradation mapping and assessment, the study suggests a few policies that require the immediate attention of forest policy-makers to implement them immediately and ensure sustainable development in the SRF. Numéro de notice : A2020-752 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091016 Date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.3390/f11091016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96432
in Forests > vol 11 n° 9 (September 2020) . - N° 1016[article]Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process / Biswajit Nath in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)PermalinkPermalinkA new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods / Yongjiu Feng in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)PermalinkPermalinkSpace, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data / Zheye Wang in Cartography and Geographic Information Science, Vol 46 n° 4 (July 2019)PermalinkExamining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change / Hao Wu in International journal of geographical information science IJGIS, Vol 33 n° 5-6 (May - June 2019)PermalinkVideo event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)PermalinkAutomatic extraction of road networks from GPS traces / Jia Qiu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 8 (August 2016)PermalinkApport de la télédétection à l'analyse de la dynamique de l'occupation du sol à partir d'une utilisation couplée d'un modèle de markov et d'un automate cellulaire. Cas du département de Sintra (Centre-Ouest de la Cote d'Ivoire). / Vami Hermann N'guessan Bi in Revue Française de Photogrammétrie et de Télédétection, n° 204 (Octobre 2013)PermalinkA hybrid multiview stereo algorithm for modeling urban scenes / Florent Lafarge in IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, vol 35 n° 1 (January 2013)Permalink