Descripteur
Documents disponibles dans cette catégorie (46)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation / Ville Kankare in Forests, vol 13 n° 3 (March 2022)
[article]
Titre : Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation Type de document : Article/Communication Auteurs : Ville Kankare, Auteur ; Ninni Saarinen, Auteur ; Jiri Pyorala, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 397 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse forestière
[Termes IGN] croissance des arbres
[Termes IGN] dendrochronologie
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Finlande
[Termes IGN] forêt équienne
[Termes IGN] modèle linéaire
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] variation de densitéRésumé : (auteur) Wood density is well known to vary between tree species as well as within and between trees of a certain species depending on the growing environment causing uncertainties in forest biomass and carbon storage estimation. This has created a need to develop novel methodologies to obtain wood density information over multiple tree communities, landscapes, and ecoregions. Therefore, the aim of this study was to evaluate the dependencies between structural characteristics of Scots pine (Pinus sylvestris L.) tree communities and internal wood property (i.e., mean wood density and ring width) variations at breast height. Terrestrial laser scanning was used to derive the structural characteristics of even-aged Scots pine dominated forests with varying silvicultural treatments. Pearson’s correlations and linear mixed effect models were used to evaluate the interactions. The results show that varying silvicultural treatments did not have a statistically significant effect on the mean wood density. A notably stronger effect was observed between the structural characteristics and the mean ring width within varying treatments. It can be concluded that single time terrestrial laser scanning is capable of capturing the variability of structural characteristics and their interactions with mean ring width within different silvicultural treatments but not the variation of mean wood density. Numéro de notice : A2027-208 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13030397 Date de publication en ligne : 28/02/2022 En ligne : https://doi.org/10.3390/f13030397 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100025
in Forests > vol 13 n° 3 (March 2022) . - n° 397[article]Planning of commercial thinnings using machine learning and airborne Lidar data / Tauri Arumäe in Forests, vol 13 n° 2 (February 2022)
[article]
Titre : Planning of commercial thinnings using machine learning and airborne Lidar data Type de document : Article/Communication Auteurs : Tauri Arumäe, Auteur ; Mait Lang, Auteur ; Allan Sims, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 206 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Estonie
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle linéaire
[Termes IGN] planification
[Termes IGN] semis de pointsRésumé : (auteur) The goal of this study was to predict the need for commercial thinning using airborne lidar data (ALS) with random forest (RF) machine learning algorithm. Two test sites (with areas of 14,750 km2 and 12,630 km2) were used with a total of 1053 forest stands from southwestern Estonia and 951 forest stands from southeastern Estonia. The thinnings were predicted based on the ALS measurements in 2019 and 2017. The two most important ALS metrics for predicting the need for thinning were the 95th height percentile and the canopy cover. The prediction accuracy based on validation stands was 93.5% for southwestern Estonia and 85.7% for southeastern Estonia. For comparison, the general linear model prediction accuracy was less for both test sites—92.1% for southwest and 81.8% for southeast. The selected important predictive ALS metrics differed from those used in the RF algorithm. The cross-validation of the thinning necessity models of southeastern and southwestern Estonia showed a dependence on geographic regions. Numéro de notice : A2022-122 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13020206 Date de publication en ligne : 29/01/2022 En ligne : https://doi.org/10.3390/f13020206 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99674
in Forests > vol 13 n° 2 (February 2022) . - n° 206[article]Endmember bundle extraction based on multiobjective optimization / Rong Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Endmember bundle extraction based on multiobjective optimization Type de document : Article/Communication Auteurs : Rong Liu, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2021 Article en page(s) : pp 8630 - 8645 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] compensation par faisceaux
[Termes IGN] distribution de Pareto
[Termes IGN] image hyperspectrale
[Termes IGN] modèle linéaire
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) A number of endmember extraction methods have been developed to identify pure pixels in hyperspectral images (HSIs). The majority of them use only one spectrum to represent one kind of material, which ignores the spectral variability problem that particularly characterizes a HSI with high spatial resolution. Only a few algorithms have been developed to identify multiple endmembers representing the spectral variability within each class, called endmember bundle extraction (EBE). This article introduces multiobjective particle swarm optimization for the identification of multiple endmember spectra with variability. Unlike existing convex geometry-based EBE methods, which operate on a single geometry of the dataspace, the proposed method divides the observed data into subsets along the spectral dimension and simultaneously operates on multiple dataspaces to obtain candidate endmembers based on multiobjective particle swarm optimization. The candidate endmembers are then refined by spatial post-processing and sequential forward floating selection to produce the final result. Experiments are conducted on both synthetic and real hyperspectral data to demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art methods. Numéro de notice : A2021-714 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3037249 En ligne : https://doi.org/10.1109/TGRS.2020.3037249 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98621
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8630 - 8645[article]Convex hull: another perspective about model predictions and map derivatives from remote sensing data / Jean-Pierre Renaud (2021)
Titre : Convex hull: another perspective about model predictions and map derivatives from remote sensing data Type de document : Article/Communication Auteurs : Jean-Pierre Renaud , Auteur ; Ankit Sagar , Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Christine Deleuze, Auteur ; Cédric Vega , Auteur Editeur : Vienne [Autriche] : Technische Universität Wien Année de publication : 2021 Collection : Geowissenschaftliche Mitteilungen, ISSN 1811-8380 num. 104 Projets : ARBRE / AgroParisTech (2007 -) Conférence : SilviLaser 2021, 17th conference on Lidar Applications for Assessing and Managing Forest Ecosystems 28/09/2021 30/09/2021 Vienne + online Autriche open access proceedings Projets : DEEPSURF / Pironon, Jacques Importance : pp 71 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut non spatial
[Termes IGN] convexité
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] erreur systématique
[Termes IGN] modèle de simulation
[Termes IGN] modèle linéaireMots-clés libres : enveloppe convexe Résumé : (auteur) [introduction] In forest inventories as well as in the process of building models, obtaining an efficient sample is a central goal to reach precise estimates of forest attributes (Hawbaker et al. 2009, Frazer et al. 2011, Grafström et al. 2014, Saarela et al. 2015, Bouvier et al. 2019). In a model-based approach, a plots sample must cover adequately the variability of the considered forest attributes in order to minimise prediction error. Different strategies have been proposed to efficiently distribute the field sampling units in the auxiliary space of the remote sensing data (e.g. Hawbaker et al. 2009, Grafström et al. 2014). Some authors have proposed to stratify Airborne Laser Scanning data (ALS) to optimize sampling (Hawbaker et al. 2009, Frazer et al. 2011), and Maltamo et al. (2011) compared different field plot selection strategies in order to optimise models precision. Interestingly, White et al. (2013) applied convex hull approach to show uncovered forest structures by the field calibration sampling units, since large prediction errors could be associated with model extrapolations, resulting in potentially biased map derivatives. In this research, we use convex hull to identify the proportion of extrapolated pixels, computed their distance to the calibration domain and estimated bias associated to the linear model predictions on an ALS case study. Numéro de notice : C2021-030 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.34726/wim.1919 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.34726/wim.1919 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98997
Titre : Representing shape collections with alignment-aware linear models Type de document : Article/Communication Auteurs : Romain Loiseau , Auteur ; Tom Monnier, Auteur ; Loïc Landrieu , Auteur ; Mathieu Aubry, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2021 Autre Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Projets : READY3D / Landrieu, Loïc Conférence : 3DV 2021, International Conference on 3D Vision 01/12/2021 03/12/2021 Londres online Royaume-Uni Proceedings IEEE Importance : pp 1044 - 1053 Format : 21 x 30 cm Note générale : bibliographie
This work was supported in part by ANR project READY3D ANR-19-CE23-0007 and HPC resources from GENCI-IDRIS (Grant 2020-AD011012096).Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de données
[Termes IGN] apprentissage profond
[Termes IGN] données localisées 3D
[Termes IGN] modèle linéaire
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] transformation affineRésumé : (auteur) In this paper, we revisit the classical representation of 3D point clouds as linear shape models. Our key insight is to leverage deep learning to represent a collection of shapes as affine transformations of low-dimensional linear shape models. Each linear model is characterized by a shape prototype, a low-dimensional shape basis and two neural networks. The networks take as input a point cloud and predict the coordinates of a shape in the linear basis and the affine transformation which best approximate the input. Both linear models and neural networks are learned end-to-end using a single reconstruction loss. The main advantage of our approach is that, in contrast to many recent deep approaches which learn feature-based complex shape representations, our model is explicit and every operation occurs in 3D space. As a result, our linear shape models can be easily visualized and annotated, and failure cases can be visually understood. While our main goal is to introduce a compact and interpretable representation of shape collections, we show it leads to state of the art results for few-shot segmentation. Code and data are available at: https://romainloiseau.github.io/deep-linear-shapes Numéro de notice : C2021-036 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/3DV53792.2021.00112 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.1109/3DV53792.2021.00112 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98385 Drought stress detection in juvenile oilseed rape using hyperspectral imaging with a focus on spectra variability / Wiktor R. Żelazny in Remote sensing, vol 12 n° 20 (October-2 2020)PermalinkUse of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of pinus nigra and pinus pinaster stands / Juncal Espinosa in Forests, vol 11 n° 9 (September 2020)PermalinkRecognizing linear building patterns in topographic data by using two new indices based on Delaunay triangulation / Xianjin He in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)PermalinkOn the detectability of mis-modeled biases in the network-derived positioning corrections and their user impact / Amir Khodabandeh in GPS solutions, vol 23 n° 3 (July 2019)PermalinkAtmospheric artifacts correction with a covariance-weighted linear model over mountainous regions / Zhongbo Hu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)PermalinkModels for diameter and height growth of Scots pine, Norway spruce and pubescent birch in drained peatland sites in Finland / Jaakko Repola in Silva fennica, vol 52 n° 5 (November 2018)PermalinkA two-stage estimation method with bootstrap inference for semi-parametric geographically weighted generalized linear models / Dengkui Li in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)PermalinkUnsupervised detection of ruptures in spatial relationships in video sequences based on log‑likelihood ratio / Abdalbassir Abou-Elailah in Pattern Analysis and Applications, vol 21 n° 3 (August 2018)PermalinkA typification method for linear pattern in urban building generalisation / Xianyong Gong in Geocarto international, vol 33 n° 2 (February 2018)PermalinkHow does spatial scale affect species richness modelling? A test using remote sensing data and geostatistics / M. Marcantonio in Annali di Botanica, vol 7 (2017)Permalink