International journal of geographical information science IJGIS . vol 30 n° 9-10Mention de date : September - October 2016 Paru le : 01/09/2016 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2016051 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierExploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks / Enrico Steiger in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks Type de document : Article/Communication Auteurs : Enrico Steiger, Auteur ; Bernd Resch, Auteur ; Alexander Zipf, Auteur Année de publication : 2016 Article en page(s) : pp 1694 - 1716 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte de Kohonen
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données hétérogènes
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] traitement de données localisées
[Termes IGN] TwitterRésumé : (Auteur) The investigation of human activity patterns from location-based social networks like Twitter is an established approach of how to infer relationships and latent information that characterize urban structures. Researchers from various disciplines have performed geospatial analysis on social media data despite the data’s high dimensionality, complexity and heterogeneity. However, user-generated datasets are of multi-scale nature, which results in limited applicability of commonly known geospatial analysis methods. Therefore in this paper, we propose a geographic, hierarchical self-organizing map (Geo-H-SOM) to analyze geospatial, temporal and semantic characteristics of georeferenced tweets. The results of our method, which we validate in a case study, demonstrate the ability to explore, abstract and cluster high-dimensional geospatial and semantic information from crowdsourced data. Numéro de notice : A2016-566 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1144887 En ligne : http://dx.doi.org/10.1080/13658816.2016.1144887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81707
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1694 - 1716[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Understanding the bias of call detail records in human mobility research / Ziliang Zhao in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Understanding the bias of call detail records in human mobility research Type de document : Article/Communication Auteurs : Ziliang Zhao, Auteur ; Shih-Lung Shaw, Auteur ; Yang Xu, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 1738 - 1762 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données massives
[Termes IGN] erreur systématique
[Termes IGN] mobilité humaine
[Termes IGN] navigation pédestre
[Termes IGN] statistiques d'appels détaillés
[Termes IGN] téléphonie mobileRésumé : (Auteur) In recent years, call detail records (CDRs) have been widely used in human mobility research. Although CDRs are originally collected for billing purposes, the vast amount of digital footprints generated by calling and texting activities provide useful insights into population movement. However, can we fully trust CDRs given the uneven distribution of people’s phone communication activities in space and time? In this article, we investigate this issue using a mobile phone location dataset collected from over one million subscribers in Shanghai, China. It includes CDRs (~27%) plus other cellphone-related logs (e.g., tower pings, cellular handovers) generated in a workday. We extract all CDRs into a separate dataset in order to compare human mobility patterns derived from CDRs vs. from the complete dataset. From an individual perspective, the effectiveness of CDRs in estimating three frequently used mobility indicators is evaluated. We find that CDRs tend to underestimate the total travel distance and the movement entropy, while they can provide a good estimate to the radius of gyration. In addition, we observe that the level of deviation is related to the ratio of CDRs in an individual’s trajectory. From a collective perspective, we compare the outcomes of these two datasets in terms of the distance decay effect and urban community detection. The major differences are closely related to the habit of mobile phone usage in space and time. We believe that the event-triggered nature of CDRs does introduce a certain degree of bias in human mobility research and we suggest that researchers use caution to interpret results derived from CDR data. Numéro de notice : A2016-567 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2015.1137298 En ligne : http://dx.doi.org/10.1080/13658816.2015.1137298 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81710
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1738 - 1762[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Measures of transport mode segmentation of trajectories / Adrain C. Prelipcean in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Measures of transport mode segmentation of trajectories Type de document : Article/Communication Auteurs : Adrain C. Prelipcean, Auteur ; Gyözö Gidofalvi, Auteur ; Yusak O. Susilo, Auteur Année de publication : 2016 Article en page(s) : pp 1763 - 1805 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse spatio-temporelle
[Termes IGN] calcul d'erreur
[Termes IGN] itinéraire
[Termes IGN] navigation
[Termes IGN] segmentation
[Termes IGN] transportRésumé : (Auteur) Rooted in the philosophy of point- and segment-based approaches for transportation mode segmentation of trajectories, the measures that researchers have adopted to evaluate the quality of the results (1) are incomparable across approaches, hence slowing the progress in the field and (2) do not provide insight about the quality of the continuous transportation mode segmentation. To address these problems, this paper proposes new error measures that can be applied to measure how well a continuous transportation mode segmentation model performs. The error measures introduced are based on aligning multiple inferred continuous intervals to ground truth intervals, and measure the cardinality of the alignment and the spatial and temporal discrepancy between the corresponding aligned segments. The utility of this new way of computing errors is shown by evaluating the segmentation of three generic transportation mode segmentation approaches (implicit, explicit–holistic, and explicit–consensus-based transport mode segmentation), which can be implemented in a thick client architecture. Empirical evaluations on a large real-word data set reveal the superiority of explicit–consensus-based transport mode segmentation, which can be attributed to the explicit modeling of segments and transitions, which allows for a meaningful decomposition of the complex learning task. Numéro de notice : A2016-568 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2015.1137297 Date de publication en ligne : 29/01/2016 En ligne : http://dx.doi.org/10.1080/13658816.2015.1137297 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81712
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1763 - 1805[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Finding spatial outliers in collective mobility patterns coupled with social ties / Monica Wachowicz in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Finding spatial outliers in collective mobility patterns coupled with social ties Type de document : Article/Communication Auteurs : Monica Wachowicz, Auteur ; Tianyu Liu, Auteur Année de publication : 2016 Article en page(s) : pp 1806 - 1831 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] centroïde
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] interface en langage naturel
[Termes IGN] mobilité humaine
[Termes IGN] statistiques d'appels détaillés
[Termes IGN] traitement de données localisées
[Termes IGN] traitement du langage naturel
[Termes IGN] Twitter
[Termes IGN] valeur aberranteRésumé : (Auteur) Currently the increase in the variety and volume of data sources is demanding new data analytical workflows for exploring them concurrently, especially if the goal is to detect spatial outliers. In this paper, we propose a data analytical workflow for exploring Call Detail Records in conjunction with geotagged tweets. The aim was to investigate how massive data point observations can be analyzed to detect spatial outliers in collective mobility patterns that are coupled with social ties. This workflow consists of analytical tasks that are developed based on the a-priori assumption of two isometric spaces where Natural Language Processing techniques are used to find spatial clusters from geotagged tweets in a Social Space which are later used to aggregate the Call Detail Records generated by antennas located in the Mobility Space. The dynamic weighted centroids that are given by the mean location of the number of calls per hour of all antennas that belong to a particular cluster are used to compute Standard Deviation Ellipses. The longer the period of time a weighted centroid stays outside of the 99.7% probability region of an ellipse, the highest the likelihood that they are spatial outliers. The workflow was implemented for the city of Dakar in Senegal. The results indicate that the further the hourly weighted centroids are skewed from the normal mean of an ellipse, the stronger the influence of a cluster is in finding spatial outliers. Furthermore, the longer the period of time the outliers stays outside of the 99.7% probability region of an ellipse, the highest the likelihood that the outliers are genuine and can be associated to extraordinary events such as natural disasters and national holidays. Numéro de notice : A2016-569 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1144887 En ligne : http://dx.doi.org/10.1080/13658816.2016.1144887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81713
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1806 - 1831[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? / Qunying Huang in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? Type de document : Article/Communication Auteurs : Qunying Huang, Auteur ; David W. S. Wong, Auteur Année de publication : 2016 Article en page(s) : pp 1871 - 1898 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse socio-économique
[Termes IGN] base de données spatiotemporelles
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] morphologie urbaine
[Termes IGN] surveillance
[Termes IGN] TwitterRésumé : (Auteur) Individual activity patterns are influenced by a wide variety of factors. The more important ones include socioeconomic status (SES) and urban spatial structure. While most previous studies relied heavily on the expensive travel-diary type data, the feasibility of using social media data to support activity pattern analysis has not been evaluated. Despite the various appealing aspects of social media data, including low acquisition cost and relatively wide geographical and international coverage, these data also have many limitations, including the lack of background information of users, such as home locations and SES. A major objective of this study is to explore the extent that Twitter data can be used to support activity pattern analysis. We introduce an approach to determine users’ home and work locations in order to examine the activity patterns of individuals. To infer the SES of individuals, we incorporate the American Community Survey (ACS) data. Using Twitter data for Washington, DC, we analyzed the activity patterns of Twitter users with different SESs. The study clearly demonstrates that while SES is highly important, the urban spatial structure, particularly where jobs are mainly found and the geographical layout of the region, plays a critical role in affecting the variation in activity patterns between users from different communities. Numéro de notice : A2016-570 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1145225 En ligne : http://dx.doi.org/10.1080/13658816.2016.1145225 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81714
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1871 - 1898[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Discovery of local topics by using latent spatio-temporal relationships in geo-social media / Kyoung-Sook Kim in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Discovery of local topics by using latent spatio-temporal relationships in geo-social media Type de document : Article/Communication Auteurs : Kyoung-Sook Kim, Auteur ; Isao Kojima, Auteur ; Hirotaka Ogawa, Auteur Année de publication : 2016 Article en page(s) : pp 1899 - 1922 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] données spatiotemporelles
[Termes IGN] géovisualisation
[Termes IGN] positionnement automatique
[Termes IGN] temps réel
[Termes IGN] traitement de donnéesRésumé : (Auteur) Social networks have played a crucial role as information channels for people to understanding their daily lives beyond merely being communication tools. In particular, coupling social networks with geographic location has boosted the worth of social media to not only enable comprehension of the effects of natural phenomena such as global warming and disasters, but also the social patterns of human societies. However, the high rate of social data generation and the large amounts of noisy data makes it difficult to directly apply social media to decision-making processes. This article proposes a new system of analyzing the spatio-temporal patterns of social phenomena in real time and the discovery of local topics based on their latent spatio-temporal relationships. We will first describe a model that represents the local patterns of populations of geo-tagged social media. We will then define a local topic whose keywords share a region in space and time and present a system implementation based on existing open source technologies. We evaluated the model of local topics with several ways of visualization in experiments and demonstrated a certain social pattern from a dataset of daily Twitter streams. The results obtained from experiments revealed certain keywords had a strong spatio-temporal proximity even though they did not occur in the same message. Numéro de notice : A2016-571 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1146956 En ligne : http://dx.doi.org/10.1080/13658816.2016.1146956 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81715
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1899 - 1922[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible A novel methodology for identifying environmental exposures using GPS data / Andreea Cetateanu in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : A novel methodology for identifying environmental exposures using GPS data Type de document : Article/Communication Auteurs : Andreea Cetateanu, Auteur ; Bogdan-Alexandru Luca, Auteur ; Andrei Alin Popescu, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 1944 - 1960 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données GPS
[Termes IGN] durée de trajet
[Termes IGN] santé
[Termes IGN] véhicule automobile
[Termes IGN] voisinage (relation topologique)Résumé : (Auteur) Aim: While studies using global positioning systems (GPS) have the potential to refine measures of exposure to the neighbourhood environment in health research, one limitation is that they do not typically identify time spent undertaking journeys in motorised vehicles when contact with the environment is reduced. This paper presents and tests a novel methodology to explore the impact of this concern.
Methods: Using a case study of exposure assessment to food environments, an unsupervised computational algorithm is employed in order to infer two travel modes: motorised and non-motorised, on the basis of which trips were extracted. Additional criteria are imposed in order to improve robustness of the algorithm.
Results: After removing noise in the GPS data and motorised vehicle journeys, 82.43% of the initial GPS points remained. In addition, after comparing a sub-sample of trips classified visually of motorised, non-motorised and mixed mode trips with the algorithm classifications, it was found that there was an agreement of 88%. The measures of exposure to the food environment calculated before and after algorithm classification were strongly correlated.
Conclusion: Identifying non-motorised exposures to the food environment makes little difference to exposure estimates in urban children but might be important for adults or rural populations who spend more time in motorised vehicles.Numéro de notice : A2016-572 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1145682 En ligne : http://dx.doi.org/10.1080/13658816.2016.1145682 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81728
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1944 - 1960[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Modeling spatiotemporal information generation / Simon Scheider in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Modeling spatiotemporal information generation Type de document : Article/Communication Auteurs : Simon Scheider, Auteur ; Benedikt Gräler, Auteur ; Edzer J. Pebesma, Auteur ; Christophe Stasch, Auteur Année de publication : 2016 Article en page(s) : pp 1980 - 2008 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données dérivée
[Termes IGN] données hétérogènes
[Termes IGN] exploration de données géographiques
[Termes IGN] information géographique
[Termes IGN] mise à jour de base de données
[Termes IGN] mise à jour en continu
[Termes IGN] regroupement de données
[Termes IGN] source de donnéesRésumé : (Auteur) Maintaining knowledge about the provenance of datasets, that is, about how they were obtained, is crucial for their further use. Contrary to what the overused metaphors of ‘data mining’ and ‘big data’ are implying, it is hardly possible to use data in a meaningful way if information about sources and types of conversions is discarded in the process of data gathering. A generative model of spatiotemporal information could not only help automating the description of derivation processes but also assessing the scope of a dataset’s future use by exploring possible transformations. Even though there are technical approaches to document data provenance, models for describing how spatiotemporal data are generated are still missing. To fill this gap, we introduce an algebra that models data generation and describes how datasets are derived, in terms of types of reference systems. We illustrate its versatility by applying it to a number of derivation scenarios, ranging from field aggregation to trajectory generation, and discuss its potential for retrieval, analysis support systems, as well as for assessing the space of meaningful computations. Numéro de notice : A2016-573 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1151520 En ligne : http://dx.doi.org/10.1080/13658816.2016.1151520 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81729
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1980 - 2008[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Integrating social network data into GISystems / Clio Andris in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Integrating social network data into GISystems Type de document : Article/Communication Auteurs : Clio Andris, Auteur Année de publication : 2016 Article en page(s) : pp 2009 - 2031 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] classe d'objets
[Termes IGN] comportement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] service fondé sur la positionRésumé : (Auteur) Today, online social media outlets provide new and plentiful sources of data on social networks (SNs) and location-based social networks (LBSNs), i.e., geolocated evidence of connections between individuals. While SNs have been used to show how the magnitude of social connectivity decreases with distance, there are few examples of how to include SNs as layers in a GISystem. If SNs, and thus, interpersonal relationships, could be analyzed in a geographic information system (GIS) setting, we could better model how humans socialize, share information, and form social groups within the complex geographic landscape.
Our goal is to facilitate a guide for analyzing SNs (as derived from online social media, telecommunications, surveys, etc.) within geographic space by combining the mature fields of social network analysis (SNA) and GISystems. First, we describe why modeling socialization in geographic space is essential for understanding human behavior. We then outline best practices and techniques for embedding SN nodes and edges in GISystems by introducing terms like ‘social flow’ and ‘anthrospace’, and categorizations for data and spatial aggregation types. Finally, we explore case study vignettes of SNA within GISystems from diverse regions located in Bolivia, China, Côte d’Ivoire, Singapore, the United Kingdom, and the United States, using concepts such as geolocated dyads, ego–alter relationships, node feature roles, modularity, and network transitivity.Numéro de notice : A2016-574 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1153103 En ligne : http://dx.doi.org/10.1080/13658816.2016.1153103 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81730
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 2009 - 2031[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Incorporating movement in species distribution models: how do simulations of dispersal affect the accuracy and uncertainty of projections? / Paul Holloway in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Incorporating movement in species distribution models: how do simulations of dispersal affect the accuracy and uncertainty of projections? Type de document : Article/Communication Auteurs : Paul Holloway, Auteur ; Jennifer A. Miller, Auteur ; Simon Gillings, Auteur Année de publication : 2016 Article en page(s) : pp 2050 - 2074 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Aves
[Termes IGN] changement climatique
[Termes IGN] distribution spatiale
[Termes IGN] Grande-Bretagne
[Termes IGN] habitat d'espèce
[Termes IGN] incertitude des données
[Termes IGN] modèle de dispersion
[Termes IGN] système d'information géographiqueRésumé : (Auteur) Species distribution models (SDMs) are one of the most important GIScience research areas in biogeography and are the primary means by which the potential effects of climate change on species’ distributions and ranges are investigated. Dispersal is an important ecological process for species responding to changing climates, however, SDMs and their subsequent spatial products rarely reflect accessibility to any future suitable environment. Dispersal-related movement can be confounded by factors that vary across landscapes and climates, as well as within and among species, and it has therefore remained difficult to parametrise in SDMs. Here we compared 20 models that have previously been used (or have the potential to be used) to represent dispersal processes in SDM to predict future range shifts in response to climate change. We assessed the different dispersal models in terms of their accuracy at predicting future distributions, as well as the uncertainty associated with their predictions. Atlas data for 50 bird species from 1988 to 1991 in Great Britain were treated as base distributions (t1), with the species–environment relationships extrapolated (using three commonly used statistical methods) to 2008–2011 (t2). Dispersal (in the form of the 20 different models) was simulated from the base distribution (t1) to 2008–2011 (t2). The results were then combined and used to identify locations that were both abiotically suitable (obtained from the statistical methods) and accessible (obtained from the dispersal models). The accuracy of these coupled projections was assessed with the 2008–2011 atlas data (the observed t2 distribution). There was substantial variation in the accuracy of the different dispersal models, and in general, the more restrictive dispersal models (e.g. fixed rate dispersal) resulted in lower accuracy for the metrics which reward correct prediction of presences. Ensemble models of the dispersal methods (generated by combining multiple projection outcomes) were created for each species, and a new Ensemble Agreement Index (EAI), which ranges from 0 (no agreement among models) to 1 (full agreement among models) was developed to quantify uncertainty among the projections. EAI values ranged from 0.634 (some areas of disagreement and therefore medium uncertainty among dispersal models) to 0.999 (large areas of agreement and low uncertainty among dispersal models). The results of this research highlight the importance of incorporating dispersal and also illustrate that the method with which dispersal is simulated greatly impacts the projected future distribution. This has important implications for studies aimed at predicting the effects of changing environmental conditions on species’ distributions. Numéro de notice : A2016-575 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1158823 En ligne : http://dx.doi.org/10.1080/13658816.2016.1158823 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81732
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 2050 - 2074[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible