Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A data fusion-based framework to integrate multi-source VGI in an authoritative land use database / Lanfa Liu in International Journal of Digital Earth, vol 14 n° 4 (April 2021)
[article]
Titre : A data fusion-based framework to integrate multi-source VGI in an authoritative land use database Type de document : Article/Communication Auteurs : Lanfa Liu, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Laurence Jolivet , Auteur ; Arnaud Le Bris , Auteur ; Linda M. See, Auteur Année de publication : 2021 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 480 - 509 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données d'occupation du sol
[Termes IGN] base de données localisées de référence
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] fusion de données
[Termes IGN] intégration de données
[Termes IGN] mise à jour de base de données
[Termes IGN] OCS GE
[Termes IGN] théorie de Dempster-ShaferRésumé : (auteur) Updating an authoritative Land Use and Land Cover (LULC) database requires many resources. Volunteered geographic information (VGI) involves citizens in the collection of data about their spatial environment. There is a growing interest in using existing VGI to update authoritative databases. This paper presents a framework aimed at integrating multi-source VGI based on a data fusion technique, in order to update an authoritative land use database. Each VGI data source is considered to be an independent source of information, which is fused together using Dempster-Shafer Theory (DST). The framework is tested in the updating of the authoritative land use data produced by the French National Mapping Agency. Four data sets were collected from several in-situ and remote campaigns run between 2018 and 2020 by contributors with varying profiles. The data fusion approach achieved an overall accuracy of 85.6% for the 144 features having at least two contributions when the confidence threshold was set to 0.05. Despite the heterogeneity and limited amount of VGI used, the results are promising, with 99% of the LU polygons updated or enriched. These results show the potential of using multi-source VGI to update or enrich authoritative LU data and potentially LULC data more generally. Numéro de notice : A2021-069 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/17538947.2020.1842524 Date de publication en ligne : 05/11/2020 En ligne : https://hal.science/hal-03046640v1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96522
in International Journal of Digital Earth > vol 14 n° 4 (April 2021) . - pp 480 - 509[article]Vers une occupation du sol France entière par imagerie satellite à très haute résolution / Tristan Postadjian (2020)
Titre : Vers une occupation du sol France entière par imagerie satellite à très haute résolution Type de document : Thèse/HDR Auteurs : Tristan Postadjian , Auteur ; Clément Mallet , Directeur de thèse ; Arnaud Le Bris , Encadrant ; Hichem Sahbi, Encadrant Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2020 Importance : 169 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée pour l'obtention du titre de Docteur de l'Université Paris-Est, spécialité : Mathématiques, Sciences et Technologies de l'Information et de la CommunicationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données localisées IGN
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image à très haute résolution
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] mise à jour de base de données
[Termes IGN] occupation du sol
[Termes IGN] OCS GEIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La connaissance de la couverture des territoires en terme d’occupation des sols est devenue un enjeu majeur du XXIème siècle. Que ce soit à l’échelle nationale ou à une échelle plus globale, les initiatives se multiplient pour proposer des cartographies d’occupation des sols qui répondent à des besoins propres à chacune. Consistant à classer des objets présents sur le sol selon des nomenclatures prédéfinies, la tâche est fastidieuse à l’heure actuelle avec des processus essentiellement manuels ou semi-manuels, nécessaires pour garantir le respect de certaines qualités et spécifications. De son côté, la télédétection spatiale a connu un essor conséquent avec la multiplication des capteurs optiques d’observation de la Terre disponibles et de leur diversité en terme de résolutions spectrale, spatiale et temporelle. Ces capteurs optiques proposent chacun une description de la surface terrestre qui leur est propre, et donc caractérisant un ou plusieurs type(s) d’occupation(s) des sols. Ces types dépendent justement des caractéristiques de ces capteurs, caractéristiques adaptées davantage à l’observation des glaciers, des forêts ou des zones plus urbaines par exemple. Les satellites SPOT 6 et SPOT 7, lancés en 2012 et 2014 respectivement, sont dotés de capteurs optiques à très haute résolution spatiale, et acquièrent des images dans quatre bandes spectrales à haute résolution ainsi qu’une bande panchromatique à très haute résolution, permettant de porter la résolution des quatre canaux spectraux à 1,5 m. L’IGN, à partir de ces acquisitions SPOT disponibles sur le pôle de données surfaces continentales THEIA, produit chaque année une couverture d’orthophotos sur l’ensemble du territoire français. Il apparaît dès lors intéressant d’exploiter cette couverture pour générer une OCS millésimée. La problématique de cartographie de l’occupation des sols automatique à partir d’images aériennes ou satellites occupe la communauté de télédétection depuis longtemps, par le biais de processus de classification supervisés, tels que les SVMs, ou les forêts aléatoires pour, entre autres, la vitesse d’exécution de ces derniers. Mais les résultats obtenus par ces méthodes n’ont pas encore permis une réelle automatisation, notamment en adéquation avec des spécifications existantes (erreurs encore trop importantes). En parallèle de ces algorithmes depuis longtemps utilisés, des méthodes d’apprentissage automatique d’un genre nouveau, bien que reposant sur des concepts remontant aux années 1950, émergent depuis une décennie et sont étroitement liés aux recherches menées en machine learning. L’apprentissage profond, dont il est question ici, a fait ses preuves dans de nombreux domaines depuis le traitement naturel du langage, à la reconnaissance d’objets dans des images. Cet essor récent est la conséquence de la disponibilité de grandes bases de données d’apprentissage, ainsi que la démocratisation de l’utilisation de GPUs et de l’accroissement général des puissances de calcul. Représentants principaux de cette famille d’apprentissage, les réseaux de neurones profonds ont réellement bouleversé le monde actuel au quotidien. Que ce soit au niveau académique en terme de recherche, au niveau sociétal, au travers des smartphones par exemple (reconnaissances vocale, faciale, systèmes de recommandation), ou même au niveau politique, avec les questions déontologiques que cela peut poser en terme de confidentialité des données (RGPD) et de protection des libertés individuelles, l’apprentissage profond est au cœur de technologies utilisées par la plupart des gens, de manière transparente et donc sans que ceux-ci s’en aperçoivent. En effet, pour afficher de telles performances dans tant de domaines, l’inconvénient pratique est le besoin très massif de données d’apprentissage lorsque l’on manipule ces algorithmes. Les bases de données géographiques de l’IGN sont donc une opportunité dans notre cas, permettant d’exploiter au mieux les images très haute résolution monoscopiques acquises par les satellites SPOT 6 et 7 en les classifiant automatiquement par réseaux de neurones profonds appris sur ces mêmes bases de données. C’est cette approche que nous proposons dans ces travaux de thèse, avec une volonté d’étudier cette problématique tout en se plaçant dans un cadre plus large à visée opérationnelle, afin de proposer des cartographies sur de grandes étendues géographiques. Les expérimentations menées répondent aux questions soulevées lorsque l’on cherche à classifier de grandes zones : par exemple, la couverture annuelle SPOT produite par l’IGN étant unique, deux images adjacentes de cette couverture peuvent avoir été acquises à des époques différentes. Également, nous étudions les possibilités de transfert d’apprentissage par fine-tuning qui offre beaucoup d’avantages en matière de charges de calcul et de jeu d’apprentissage. Enfin, dans un contexte de mise à jour automatique de bases de données géographiques, l’exploitation jointe d’images aériennes et de réseaux de neurones profonds est étudiée, avec un accent mis sur la préparation des données d’apprentissage issues des bases de données géographiques de l’IGN qui présentent certains inconvénients. Note de contenu : 1- Introduction
2- Etat de l'art
3- Apprentissage profond sur images satellites très haute résolution
4- Mettre à jour des bases de données d'OCS
5- Conclusion et perspectivesNuméro de notice : 25964 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Paris-Est : 2020 Organisme de stage : LaSTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 08/12/2020 En ligne : https://theses.hal.science/tel-03045637 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96546 Une base nationale pour quels objectifs ? / Thierry Touzet in Cahiers de l'Institut d'aménagement et d'urbanisme de la région Île-de-France, n° 168 (décembre 2013)
[article]
Titre : Une base nationale pour quels objectifs ? Type de document : Article/Communication Auteurs : Thierry Touzet , Auteur Année de publication : 2013 Article en page(s) : pp 25 - 26 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données d'occupation du sol
[Termes IGN] base de données localisées IGN
[Termes IGN] carte d'occupation du sol
[Termes IGN] grande échelle
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] OCS GE
[Termes IGN] utilisation du solRésumé : (Auteur) L'IGN va enrichir le socle de connaissance du territoire avec la production d'une couche d'occupation du sol à grande échelle (OCS GE). Elle a pour vocation le suivi de la consommation d'espace, notamment de l'artificialisation du sol et des espaces naturels. Elle séparera couverture et usage du sol. Le projet, lancé en 2013, est avant tout participatif et ouvert. Numéro de notice : A2013-732 Affiliation des auteurs : IGN (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32868
in Cahiers de l'Institut d'aménagement et d'urbanisme de la région Île-de-France > n° 168 (décembre 2013) . - pp 25 - 26[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 36932-01A 49.20 Revue Centre de documentation Aménagement - Urbanisme Disponible