Descripteur
Termes IGN > sciences humaines et sociales > vie des organisations > entreprise > direction d'entreprise > recherche opérationnelle > ordonnancement de tâches
ordonnancement de tâches |
Documents disponibles dans cette catégorie (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Task selection in spatial crowdsourcing from worker’s perspective / Dingxiong Deng in Geoinformatica, vol 20 n° 3 (July - September 2016)
[article]
Titre : Task selection in spatial crowdsourcing from worker’s perspective Type de document : Article/Communication Auteurs : Dingxiong Deng, Auteur ; Cyrus Shahabi, Auteur ; Ugur Demiryurek, Auteur ; Linhong Zhu, Auteur Année de publication : 2016 Article en page(s) : pp 529 – 568 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appareil portable
[Termes IGN] approximation
[Termes IGN] données localisées des bénévoles
[Termes IGN] données spatiotemporelles
[Termes IGN] géopositionnement
[Termes IGN] ordonnancement de tâches
[Termes IGN] programmation dynamique
[Termes IGN] prospective
[Termes IGN] téléphonie mobile
[Termes IGN] travail coopératifRésumé : (auteur) With the progress of mobile devices and wireless broadband, a new eMarket platform, termed spatial crowdsourcing is emerging, which enables workers (aka crowd) to perform a set of spatial tasks (i.e., tasks related to a geographical location and time) posted by a requester. In this paper, we study a version of the spatial crowdsourcing problem in which the workers autonomously select their tasks, called the worker selected tasks (WST) mode. Towards this end, given a worker, and a set of tasks each of which is associated with a location and an expiration time, we aim to find a schedule for the worker that maximizes the number of performed tasks. We first prove that this problem is NP-hard. Subsequently, for small number of tasks, we propose two exact algorithms based on dynamic programming and branch-and-bound strategies. Since the exact algorithms cannot scale for large number of tasks and/or limited amount of resources on mobile platforms, we propose different approximation algorithms. Finally, to strike a compromise between efficiency and accuracy, we present a progressive algorithms. We conducted a thorough experimental evaluation with both real-world and synthetic data on desktop and mobile platforms to compare the performance and accuracy of our proposed approaches. Numéro de notice : A2016-380 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-016-0251-4 En ligne : http://dx.doi.org/10.1007/s10707-016-0251-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81147
in Geoinformatica > vol 20 n° 3 (July - September 2016) . - pp 529 – 568[article]