Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > capteur (télédétection) > radar > Passive and Active L and S band Sensor
Passive and Active L and S band Sensor |
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Remote sensing and GIS / Basudeb Bhatta (2021)
Titre : Remote sensing and GIS Type de document : Guide/Manuel Auteurs : Basudeb Bhatta, Auteur Mention d'édition : 3ème édition Editeur : Oxford, Londres, ... : Oxford University Press Année de publication : 2021 Importance : 752 p. Format : 24 x 18 cm ISBN/ISSN/EAN : 978-0-19-949664-8 Note générale : Bibliographie
additional reading material with Oxford arealLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] acquisition d'images
[Termes IGN] airborne multispectral scanner
[Termes IGN] analyse spatiale
[Termes IGN] Global Navigation Satellite System
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Lidar
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation 3D
[Termes IGN] orthorectification
[Termes IGN] Passive and Active L and S band Sensor
[Termes IGN] photographie aérienne
[Termes IGN] Satellite Microwave Radiometer
[Termes IGN] scène 3D
[Termes IGN] stéréoscopie
[Termes IGN] système d'information géographique
[Termes IGN] traitement d'image
[Termes IGN] visualisation 3DIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) Beginning with the history and basic concepts of remote sensing and GIS, the book gives an exhaustive coverage of optical, thermal, and microwave remote sensing, global navigation satellite systems (such as GPS and IRNSS), digital photogrammetry, visual image analysis, digital image processing, spatial and attribute data model, geospatial analysis, and planning, implementation, and management of GIS. It also presents the modern trends of remote sensing and GIS with an illustrated discussion on its numerous applications. Note de contenu : 1. Concept of Remote Sensing
1.1 Introduction
1.2 Distance of Remote Sensing
1.3 Definition of Remote Sensing
1.4 Remote Sensing: Art and/or Science
1.5 Data
1.6 Remote Sensing Process
1.7 Source of Energy
1.8 Interaction with Atmosphere
1.9 Interaction with Target
1.9.1 Hemispherical Absorptance, Transmittance, and Reflectan
1.10 Interaction with the Atmosphere Again
1.11 Recording of Energy by Sensor
1.12 Transmission, Reception, and Processing
1.13 Interpretation and Analysis
1.14 Applications of Remote Sensing
1.15 Advantages of Remote Sensing
1.16 Limitations of Remote Sensing
1.17 Ideal Remote Sensing System
2. Types of Remote Sensing and Sensor Characteristics
2.1 Introduction
2.2 Types of Remote Sensing
2.3 Characteristics of Images
2.4 Orbital Characteristics of Satellite
2.5 Remote Sensing Satellites
2.6 Concept of Swath
2.7 Concept of Nadir
2.8 Sensor Resolutions
2.9 Image Referencing System
2.9.1 Path
2.9.2 Row
2.9.3 Orbital Calendar
3. History of Remote Sensing and Indian Space Program
3.1 Introduction
3.2 The Early Age
3.3 The Middle Age
3.4 The Modern Age or Space Age
3.5 Indian Space Program
4. Photographic Imaging
4.1 Introduction
4.2 Camera Systems
4.3 Types of Camera
4.4 Filter
4.5 Film
4.6 Geometry of Aerial Photography
4.7 Ideal Time and Atmosphere for Aerial Remote Sensing
5. Digital Imaging
5.1 Introduction
5.2 Digital Image
5.3 Sensor
5.4 Imaging by Scanning Technique
5.5 Hyper-spectral Imaging
5.6 Imaging By Non-scanning Technique
5.7 Thermal Remote Sensing
5.8 Other Sensors
6. Microwave Remote Sensing
6.1 Introduction
6.2 Passive Microwave Remote Sensing
6.3 Active Microwave Remote Sensing
6.4 Radar Imaging
6.5 Airborne Versus Space-Borne Radars
6.6 Radar Systems
7. Ground-truth Data and Global Positioning System
7.1 Introduction
7.2 Requirements of Ground-Truth Data
7.3 Instruments for Ground Truthing
7.4 Parameters of Ground Truthing
7.5 Factors of Spectral Measurement
7.6 Global Navigation Satellite System
8. Photogrammetry
8.1 Introduction
8.2 Development of Photogrammetry
8.3 Classification of Photogrammetry
8.4 Photogrammetric Process
8.5 Acquisition of Imagery and its Support Data
8.6 Orientation and Triangulation
8.7 Stereo Model Compilation
8.8 Stereoscopic 3D Viewing
8.9 Stereoscopic Measurement
8.10 DTM/DEM Generation
8.11 Contour Map Generation
8.12 Orthorectification
8.13 3D Feature Extraction
8.14 3D Scene Modelling
8.15 Photogrammetry and LiDAR
8.16 Radargrammetry and Radar Interferometry
8.17 Limitations of Photogrammetry
9. Visual Image Interpretation
9.1 Introduction
9.2 Information Extraction by Human and Computer
9.3 Remote Sensing Data Products
9.4 Border or Marginal Information
9.5 Image Interpretation
9.6 Elements of Visual Image Interpretation
9.7 Interpretation Keys
9.8 Generation of Thematic Maps
9.9 Thermal Image Interpretation
9.10 Radar Image Interpretation
10. Digital Image Processing
10.1 Introduction
10.2 Categorization of Image Processing
10.3 Image Processing Systems
10.4 Digital Image
10.5 Media for Digital Data Recording, Storage, and Distribution
10.6 Data Formats of Digital Image
10.7 Header Information
10.8 Display of Digital Image
10.9 Pre-processing
10.10 Image Enhancement
10.11 Image Transformation
10.12 Image Classification
11. Data Integration, Analysis, and Presentation
11.1 Introduction
11.2 Multi-approach of Remote Sensing
11.3 Integration with Ground Truth and Other Ancillary Data
11.4 Integration of Transformed Data
11.5 Integration with GIS
11.6 Process of Remote Sensing Data Analysis
11.7 The Level of Detail
11.8 Limitations of Remote Sensing Data Analysis
11.9 Presentation
12. Applications of Remote Sensing
12.1 Introduction
12.2 Land Cover and Land Use
12.3 Agriculture
12.4 Forestry
12.5 Geology
12.6 Geomorphology
12.7 Urban Applications
12.8 Hydrology
12.9 Mapping
12.10 Oceans and Coastal Monitoring
12.11 Monitoring of Atmospheric Constituents
PART II Geographic Information Systems and Geospatial Analysis
13. Concept of Geographic Information Systems
13.1 Introduction
13.2 Definitions of GIS
13.3 Key Components of GIS
13.4 GIS-An Integration of Spatial and Attribute Information
13.5 GIS-Three Views of Information System
13.6 GIS and Related Terms
13.7 GIS-A Knowledge Hub
13.8 GIS-A Set of Interrelated Subsystems
13.9 GIS-An Information Infrastructure
13.10 Origin of GIS
14. Functions and Advantages of GIS
14.1 Introduction
14.2 Functions of GIS
14.3 Application Areas of GIS
14.4 Advantages of GIS
14.5 Functional Requirements of GIS
14.6 Limitations of GIS
15. Spatial Data Model
15.1 Introduction
15.2 Spatial, Thematic, and Temporal Dimensions of Geographic Data
15.3 Spatial Entity and Object
15.4 Spatial Data Model
15.5 Raster Data Model
15.6 Vector Data Model
15.7 Raster versus Vector
15.8 Object-Oriented Data Model
15.9 File Formats of Spatial Data
16. Attribute Data Management and Metadata Concept
16.1 Introduction
16.2 Concept of Database and DBMS
16.3 Advantages of DBMS
16.4 Functions of DBMS
16.5 File and Data Access
16.6 Data Models
16.7 Database Models
16.8 Data Models in GIS
16.9 Concept of SQL
16.10 Concept of Metadata
17. Process of GIS
17.1 Introduction
17.2 Data Capture
17.3 Data Sources
17.4 Data Encoding Methods
17.5 Linking of Spatial and Attribute Data
17.6 Organizing Data for Analysis
18. Geospatial Analysis
18.1 Introduction
18.2 Geospatial Data Analysis
18.3 Integration and Modelling of Spatial Data
18.4 Geospatial Data Analysis Methods
18.5 Database Query
18.6 Geospatial Measurements
18.7 Overlay Operations
18.8 Network Analysis
18.9 Surface Analysis
18.10 Geostatistics
18.11 Geovisualization
19. Planning, Implementation, and Management of GIS
19.1 Introduction
19.2 Planning of Project
19.3 Implementation of Project
19.4 Management of Project
19.5 Keys for Successful GIS
19.6 Reasons for Unsuccessful GIS
20. Modern Trends of GIS
20.1 Introduction
20.2 Local to Global Concept in GIS
20.3 Increase in Dimensions in GIS
20.4 Linear to Non-linear Techniques in GIS
20.5 Development in Relation between Geometry and Algebra in GIS
20.6 Development of Common Techniques in GIS
20.7 Integration of GIS and Remote Sensing
20.8 Integration of GIS and Multimedia
20.9 3D GIS
20.9.1 Virtual Reality in GIS
20.10 Integration of 3D GIS and Web GIS
20.11 4D GIS and Real-time GIS
20.12 Mobile GIS
20.12.1 Mobile mapping
20.13 Collaborative GIS (CGIS)
21. Change Detection and Geosimulation
21.1 Visual change detection
21.2 Thresholding
21.3 Image difference
21.4 Image regression
21.5 Image ratioing
21.6 Vegetation index differencing
21.7 Principal component differencing
21.8 Multi-temporal image stock classification
21.9 Post classification comparison
21.10 Change vector analysis
21.12 Cellular automata simulation
21.13 Multi-agent simulation
21.14 ANN learning in simulation
Appendix A - Concept of Map, Coordinate System, and Projection
Appendix B - Concept on Mathematical TopicsNuméro de notice : 26518 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/POSITIONNEMENT Nature : Manuel de cours DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97342 Land cover-based optimal deconvolution of PALS L-band microwave brightness temperatures / A.S. Limaye in Remote sensing of environment, vol 92 n° 4 (30 September 2004)
[article]
Titre : Land cover-based optimal deconvolution of PALS L-band microwave brightness temperatures Type de document : Article/Communication Auteurs : A.S. Limaye, Auteur ; William L. Crosson, Auteur ; et al., Auteur Année de publication : 2004 Article en page(s) : pp 497 - 506 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture
[Termes IGN] biomasse
[Termes IGN] capteur actif
[Termes IGN] capteur passif
[Termes IGN] déconvolution
[Termes IGN] Glycine max
[Termes IGN] Iowa (Etats-Unis)
[Termes IGN] luminance lumineuse
[Termes IGN] maïs (céréale)
[Termes IGN] Passive and Active L and S band Sensor
[Termes IGN] Soil Moisture Experiment
[Termes IGN] température de luminanceRésumé : (Auteur) An optimal deconvolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent on land cover, which is characterized by sharp boundaries. In this study, we mathematically deconvolve the observations into brightness temperature at the field scale (500-800 m) using the sensor antenna response function. The result is more accurate spatial representation of field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval. Numéro de notice : A2004-415 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2004.02.019 En ligne : https://doi.org/10.1016/j.rse.2004.02.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26942
in Remote sensing of environment > vol 92 n° 4 (30 September 2004) . - pp 497 - 506[article]Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the soil moisture experiment in 2002 (SMEX) / U. Narayan in Remote sensing of environment, vol 92 n° 4 (30 September 2004)
[article]
Titre : Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the soil moisture experiment in 2002 (SMEX) Type de document : Article/Communication Auteurs : U. Narayan, Auteur ; V. Lakshmi, Auteur ; E. Njoku, Auteur Année de publication : 2004 Article en page(s) : pp 483 - 496 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande L
[Termes IGN] bande S
[Termes IGN] bande spectrale
[Termes IGN] capteur actif
[Termes IGN] capteur passif
[Termes IGN] Glycine max
[Termes IGN] humidité du sol
[Termes IGN] Iowa (Etats-Unis)
[Termes IGN] maïs (céréale)
[Termes IGN] Passive and Active L and S band Sensor
[Termes IGN] régression
[Termes IGN] Soil Moisture Experiment
[Termes IGN] teneur en eau de la végétation
[Termes IGN] transfert radiatifRésumé : (Auteur) The Soil Moisture Experiments in 2002 (SMEX02) were conducted in Iowa between June 25th and July 12th, 2002. A major aim of the experiments was examination of existing algorithms for soil moisture retrieval from active and passive microwave remote sensors under high vegetation water content conditions. The data obtained from the passive and active L and S band sensor (PALS) along with physical variables measured by in situ sampling have been used in this study to demonstrate the sensitivity of the instrument to soil moisture and perform soil moisture retrieval using statistical regression and physical modeling techniques. The land cover conditions in the region studied were predominantly soybean and corn crops with average vegetation water contents ranging from 0 to ~ 5 kg/m2. The PALS microwave sensitivity to soil moisture under these vegetation conditions was investigated for both passive and active measurements. The performance of the PALS instrument and retrieval algorithms has been analyzed, indicating soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture. Statistical regression techniques have been shown to perform satisfactorily with soil moisture retrieval error of around 0.05 g/g gravimetric soil moisture. The retrieval errors were higher for the corn than for the soybean fields due to the higher vegetation water content of the corn crops. However, the algorithms performed satisfactorily over the full range of vegetation conditions. Numéro de notice : A2004-414 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2004.05.018 En ligne : https://doi.org/10.1016/j.rse.2004.05.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26941
in Remote sensing of environment > vol 92 n° 4 (30 September 2004) . - pp 483 - 496[article]