Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > phytobiologie > phénologie
phénologie |
Documents disponibles dans cette catégorie (83)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing Type de document : Article/Communication Auteurs : Yali Zhang, Auteur ; Ni Wang, Auteur ; Yuliang Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] données multisources
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] puits de carbone
[Termes IGN] santé des forêtsRésumé : (auteur) Spatially explicit information on the distribution of dominant tree species groups and aboveground biomass (AGB) in forested areas is essential for developing targeted forest management and biodiversity conservation measures, as well as assessing forest carbon sequestration capacity. There is a shortage of continuously updated 30-m spatial resolution products for mapping dominant tree species groups. The vast majority of remote sensing-based AGB estimation approaches have relatively low accuracy for dominant tree species groups or forest types and are unsuitable for AGB modeling. Therefore, this study aims to develop an integrated framework that considers the phenological characteristics of different tree species to improve the mapping accuracies of forest dominant tree groups and corresponding AGB estimates. Thirty-meter resolution maps of dominant tree species groups were created using machine learning algorithms and phenological parameters. Features extracted from optical and radar images and phenological characteristics were used to construct AGB estimation models in a temporally consistent manner to improve the AGB estimation accuracy and perform dynamic AGB monitoring. The proposed method accurately characterized the dynamic distribution of the dominant tree species groups in the study area. The traditional AGB model that does not consider different forest types or species had an R2 value of 0.52, whereas the proposed model that considers phenology and forest types had an R2 value of 0.67. This result indicates that incorporating information on phenology and dominant species improves the accuracy of AGB estimations. The AGB in most regions was 30–55 t/ha, showing that the majority of the forests were young or middle-aged stands, and the areal percentage of AGB greater than 30 t/ha increased during the study period, suggesting an improvement in forest quality. Furthermore, the oak AGB was the highest, indicating that oak afforestation should be encouraged to enhance the carbon sequestration capacity of future forest ecosystems. The results provide new insights for researchers and managers to understand the trends of forest development and forest health, as well as technical information and a database for formulating more rational forest management strategies. Numéro de notice : A2023-121 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163574 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163574 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102496
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163574[article]Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine Type de document : Article/Communication Auteurs : Xingwen Lin, Auteur ; Shengbiao Wu, Auteur ; Bin Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 20 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] phénologie
[Termes IGN] réflectance de surfaceRésumé : (auteur) Land surface albedo plays an important role in controlling the surface energy budget and regulating the biophysical processes of natural dynamics and anthropogenic activities. Satellite remote sensing is the only practical approach to estimate surface albedo at regional and global scales. It nevertheless remains challenging for current satellites to capture fine-scale albedo variations due to their coarse spatial resolutions from tens to hundreds of meters. The emerging Sentinel-2 satellites, with a high spatial resolution of 10 m and an approximate 5-day revisiting cycle, provide a promising solution to address these observational limitations, yet their potentials remain underexplored. In this study, we integrated the Sentinel-2 observations with an updated direct estimation approach to improve the estimation and monitoring of fine-scale surface albedo. To enable the capability of the direct estimation approach at a 10-m scale, we combined the 10-m resolution European Space Agency (ESA) WorldCover land cover data and the 500-m resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/albedo product to build a high-quality and representative BRDF training database. To evaluate our approach, we proposed an integrated evaluation framework leveraging 3-D physical model simulations, ground measurements, and satellite observations. Specifically, we first simulated a comprehensive dataset of Sentinel-2-like surface reflectance and broadband albedo across a variety of geometric configurations using the MODIS BRDF training samples. With this dataset, we built the Look-Up-Tables (LUTs) that connect surface broadband albedo and Sentinel-2 reflectance through a direct angular bin-based linear regression approach, and further coupled these LUTs with the Google Earth Engine (GEE) cloud-computing platform. We next evaluated the proposed algorithm at two spatial levels: (1) 10-m scale for absolute accuracy assessment using the references from the Discrete Anisotropic Radiative Transfer (DART) simulations and flux-site observations, and (2) 500-m scale for large-scale mapping assessment by comparing the estimated albedo with the MODIS albedo product. Lastly, we presented four examples to show the capability of Sentinel-2 albedo in detecting fine-scale characteristics of vegetation and urban covers. Results show that: (1) the proposed algorithm accurately estimates surface albedo from Sentinel-2-like reflectance across different landscape configurations (overall root-mean-square-error (RMSE) = 0.018, bias = 0.005, and coefficient of determination (R2) = 0.88); (2) the Sentinel-2-derived surface albedo agrees well with ground measurements (overall RMSE = 0.030, bias = -0.004, and R2 = 0.94) and MODIS products (overall RMSE = 0.030, bias = 0.021, and R2 = 0.97); and (3) Sentinel-2-derived albedo accurately captures seasonal leaf phenology and rapid snow events, and detects the interspecific (or interclass) variations of tree species and colored urban rooftops. These results demonstrate the capability of the proposed approach to map high-resolution surface albedo from Sentinel-2 satellites over large spatial and temporal contexts, suggesting the potential of using such fine-scale datasets to improve our understanding of albedo-related biophysical processes in the coupled human-environment system. Numéro de notice : A2022-823 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.016 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101999
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 1 - 20[article]The contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis / Philippe Balandier in European Journal of Forest Research, vol 141 n° 6 (December 2022)
[article]
Titre : The contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis Type de document : Article/Communication Auteurs : Philippe Balandier, Auteur ; Rémy Gobin, Auteur ; Bernard Prévosto, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 979 - 997 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] bilan hydrique
[Termes IGN] écosystème forestier
[Termes IGN] évapotranspiration
[Termes IGN] forêt boréale
[Termes IGN] forêt tempérée
[Termes IGN] gestion forestière
[Termes IGN] Leaf Area Index
[Termes IGN] phénologie
[Termes IGN] sous-bois
[Termes IGN] sous-étage
[Termes IGN] structure d'un peuplement forestier
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) In the context of increasing heat periods and recurrence of droughts, and thus higher soil water depletion, we explored and quantified the role of understorey vegetation in ecosystem evapotranspiration in boreal and temperate forests. We reviewed and analysed about 200 papers that explicitly gave figures of understorey vegetation evapotranspiration relative to different stand features and traits. Understorey vegetation accounted on average for one-third of total ecosystem evapotranspiration during the growing season. Overstorey leaf area index (LAI) is the main variable that drives understorey evapotranspiration through radiation interception. Most data show that below an overstorey LAI of 2–3, the contribution of the understorey vegetation to ecosystem evapotranspiration increases exponentially, following the exponential increase of the climatic demand, i.e. potential evapotranspiration. Different factors have the potential to modulate this effect such as species composition and phenology, root distribution, and interaction with droughts. Consequently, managers must be aware that depending on understorey species present on site and stand structure, understorey vegetation can contribute significantly to a negative stand water balance. Numéro de notice : A2022-857 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01505-0 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1007/s10342-022-01505-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102108
in European Journal of Forest Research > vol 141 n° 6 (December 2022) . - pp 979 - 997[article]Forest tree species classification based on Sentinel-2 images and auxiliary data / Haotian You in Forests, vol 13 n° 9 (september 2022)
[article]
Titre : Forest tree species classification based on Sentinel-2 images and auxiliary data Type de document : Article/Communication Auteurs : Haotian You, Auteur ; Yuanwei Huang, Auteur ; Zhigang Qin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dioxyde d'azote
[Termes IGN] distribution spatiale
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] précipitation
[Termes IGN] réflectance spectrale
[Termes IGN] température de l'air
[Termes IGN] texture du sol
[Termes IGN] topographie localeRésumé : (auteur) Most research on forest tree species classification based on optical image data uses information such as spectral reflectance, vegetation index, texture, and phenology data. However, owing to the limited spectral resolution of multispectral images and the high cost of hyperspectral data, there is room for improvement in the classification of tree species in large areas based on optical images. The combined application of multispectral images and other auxiliary data can provide a new method for improving tree species classification accuracy. Hence, Sentinel-2 images were used to extract spectral reflectance, spectral index, texture, and phenological information. Data for topography, precipitation, air temperature, ultraviolet aerosol index, NO2 concentration, and other variables were included as auxiliary data. Models for forest tree species classification were constructed through feature combination and feature optimization using the random forest (RF), gradient tree boost (GTB), support vector machine (SVM), and classification and regression tree (CART) algorithms. The classification results of 16 feature combinations with the 4 classification methods were compared, and the contributions of different features to the classification models of forest tree species were evaluated. Finally, the optimal classification model was selected to identify the spatial distribution of forest tree species in the study area. The model based on feature optimization gave the best results among the 16 feature combination models. The overall accuracy and kappa coefficient were increased by 18% and 0.21, respectively, compared with the spectral classification model, and by 17% and 0.20, respectively, compared with the spectral and spectral index classification model. By analyzing the feature optimization model, it was found that terrain, ultraviolet aerosol index, and phenological information ranked as the top three features in terms of importance. Although the importance of spectral reflectance and spectral index features was lower, the number of feature variables accounted for a large proportion of the total. The importance of commonly used texture features was limited, and these features were not present in the feature optimization model. The RF algorithm had the highest classification accuracy, with an overall accuracy of 82.69% and a kappa coefficient of 0.80, among the four classification algorithms. The results of GTB were close to those of RF, and the difference in overall classification accuracy was only 0.14%. However, the results of the SVM and CART algorithms were relatively weaker, with overall classification accuracies of about 70%. It can be concluded that the combined application of Sentinel-2 images and auxiliary data can improve forest tree species classification accuracy. The model based on feature optimization achieved the highest classification accuracy among the 16 feature combination models. The spectral reflectance and spectral index data extracted from optical images are useful for tree species classification, but the effect of texture features was very limited. Auxiliary data, such as topographic features, ultraviolet aerosol index, phenological features, NO2 concentration features, topographic diversity features, precipitation features, temperature features, and multi-scale topographic location index data, can effectively improve forest tree species classification accuracy. The RF algorithm had the highest accuracy, and it can be used for tree species classification space distribution identification. The combined application of Sentinel-2 images and auxiliary data can improve classification accuracy, but the highest accuracy of the model was only 82.69%, which leaves room for improvement. Thus, more effective auxiliary data and the vertical structural parameters extracted from satellite LiDAR can be combined with multispectral images to improve forest tree species classification accuracy in future research. Numéro de notice : A2022-754 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13091416 Date de publication en ligne : 02/09/2022 En ligne : https://doi.org/10.3390/f13091416 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101757
in Forests > vol 13 n° 9 (september 2022) . - n° 1416[article]Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
[article]
Titre : Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine Type de document : Article/Communication Auteurs : Luis Carrasco, Auteur ; Go Fujita, Auteur ; Kensuke Kito, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 277 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] cartographie historique
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] Japon
[Termes IGN] phénologie
[Termes IGN] photographie aérienne
[Termes IGN] réflectance de surface
[Termes IGN] rizière
[Termes IGN] signature spectraleRésumé : (auteur) Mapping the expansion or reduction of rice fields is fundamental for food and water security, greenhouse gas emission accounting, and environmental management. The historical mapping of rice fields with satellite images is challenging because of the limited availability of remote sensing and training data from past decades. The use of phenology-based algorithms has been proposed for mapping rice fields because they can take advantage of rice fields’ characteristic spectral signature during the transplanting phase and do not need training data. However, in order to employ phenology-based algorithms effectively for the historical rice mapping of large areas, we need to incorporate automatized methods able to deal with non-usable data (e.g., cloud cover) and with spatial inconsistencies in the number of available images for each pixel. Here we propose the combination of a pixel-based, phenological algorithm with the temporal aggregation of all available Landsat images to produce national level historical maps of rice fields in Japan from the 1980s onwards. We used temporally aggregated metrics (median, percentiles, etc.), derived from spectral indices of a large number of images within the Google Earth Engine, to minimize the issue of inconsistent image availability and reduce the effects of outliers in phenology-based algorithms. We produced seven rice field maps, for the periods 1985–89, 1990–94, 1995–99, 2000–04, 2005–09, 2010–14, and 2015–19. The overall map accuracies ranged from 83% to 95% when validated with visually interpreted aerial photography. We detected a 23% decrease in the area of rice fields at a country level, although the changes varied greatly among prefectures. Here we present the first freely available historical rice field maps of Japan from the 1980s onwards, together with the source code, and a web application that enables the exploration of the maps and data relating to the derived rice field area changes. The application of temporal aggregation is promising for dealing with the gap-filling of large amounts of satellite data, reducing the issue of data outliers and providing an effective use of the historical Landsat archive for phenology-based crop detection algorithms. Our maps could greatly help researchers, conservationists and policymakers studying the drivers and consequences of rice field changes, and our methods could be extrapolated to map rice fields at large scales in other regions of the world. Numéro de notice : A2022-665 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.07.018 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.07.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101527
in ISPRS Journal of photogrammetry and remote sensing > vol 191 (September 2022) . - pp 277 - 289[article]Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method / Juan Vicente Liendro Moncada in Geocarto international, Vol 37 n° 17 ([20/08/2022])PermalinkCombination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)PermalinkA phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images / Jing Zeng in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)PermalinkExcelling the progenitors: Breeding for resistance to Dutch elm disease from moderately resistant and susceptible native stock / Jorge Dominguez in Forest ecology and management, vol 511 (May-15 2022)PermalinkA continuous change tracker model for remote sensing time series reconstruction / Yangjian Zhang in Remote sensing, vol 14 n° 9 (May-1 2022)PermalinkParcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data / Yanyan Wang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)PermalinkProjections of climate change impacts on flowering-veraison water deficits for Riesling and Müller-Thurgau in Germany / Chenyao Yang in Remote sensing, vol 14 n° 6 (March-2 2022)PermalinkDeep-learning-based multispectral image reconstruction from single natural color RGB image - Enhancing UAV-based phenotyping / Jiangsan Zhao in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkLand surface phenology retrieval through spectral and angular harmonization of Landsat-8, Sentinel-2 and Gaofen-1 data / Jun Lu in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkMonitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images / Omer Gokberk Narin in Geocarto international, vol 37 n° 5 ([01/03/2022])Permalink