Descripteur
Documents disponibles dans cette catégorie (14)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Siamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)
[article]
Titre : Siamese Adversarial Network for image classification of heavy mineral grains Type de document : Article/Communication Auteurs : Huizhen Hao, Auteur ; Zhiwei Jiang, Auteur ; Shiping Ge, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] microscope électronique
[Termes IGN] minéral
[Termes IGN] polarisation croisée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal siamois
[Termes IGN] séparateur à vaste margeRésumé : (auteur) The identification of heavy mineral grains based on microscopic images can significantly reduce the time and economic cost of the identification. There are several deep learning models to realize end-to-end identification of mineral image recently. However, due to the variety and complexity of mineral images, the existing models are difficult to accurately recognize heavy mineral grains in microscopic images. Here we propose the Siamese Adversarial Network (SAN) for image classification of the heavy mineral grains, which is the first time to focus on addressing the domain difference of heavy mineral images from different basins. In more details, we design a Siamese feature encoder to extract features of both the plane-polarized and cross-polarized images as internal representation of heavy mineral grains. The features are reconstructed to discard domain-related information by adversarial training the heavy mineral classifier and domain discriminator. The identification performance of the models under the three mixed domain experiments is consistently higher than the performance under the same domain settings respectively which shows that the model we proposed achieves a great generalization ability on unseen domains. Numéro de notice : A2022-174 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.105016 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.105016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99810
in Computers & geosciences > vol 159 (February 2022) . - n° 105016[article]Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data Type de document : Article/Communication Auteurs : Xiao-Ming Li, Auteur ; Yan Sun, Auteur ; Qiang Zhang, Auteur Année de publication : 2021 Article en page(s) : pp 3040 - 3053 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Arctique, océan
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] glace de mer
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion
[Termes IGN] texture d'imageRésumé : (auteur) In this article, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization [vertical–horizontal (VH) or horizontal–vertical (HV)] data in extra-wide (EW) swath mode based on the support vector machine (SVM) method. The classification basis includes the S1 radar backscatter and texture features, which are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e., entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparisons based on a few cases show good agreements between the synthetic aperture radar (SAR)-derived sea ice cover using the proposed method and visual inspections, of which the accuracy reaches approximately 90%–95%. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of the extracted sea ice cover by using S1 data is more than 80%. Numéro de notice : A2021-284 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007789 Date de publication en ligne : 20/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007789 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97392
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3040 - 3053[article]A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 ([15/03/2021])
[article]
Titre : A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar Type de document : Article/Communication Auteurs : Shoba Periasamy, Auteur ; Divya Senthil, Auteur ; Ramakrishnan S Shanmugam, Auteur Année de publication : 2021 Article en page(s) : pp 581 - 598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Argile
[Termes IGN] bande C
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] constante diélectrique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] limon
[Termes IGN] polarisation croisée
[Termes IGN] rugosité du sol
[Termes IGN] sable
[Termes IGN] texture du solRésumé : (auteur) The present study investigates the potential of synthetic aperture radar in demonstrating the relative percentage of sand, silt and clay content in the soil. The contribution of vegetation and topography in the backscattering coefficient has been significantly reduced by employing the terrain correction model, dual polarized SAR vegetation index and water cloud model. The target parameters namely ‘Soil Roughness (hrms-soil)’ and ‘Dielectric Constant’ (ε′vv−soil ) has arrived from cross-polarization ratio and modified Dubois model. The extracted target parameters are sufficiently correlated with in situ sand (R2 = 0.81) and clay measurements (R2 = 0.78). The relative percentage of silt was mapped by the novel idea of performing the correlation analysis between hrms-soil and ε′vv−soil and thus represented the percentage of silt with reasonable accuracy (R2 = 0.77). From the soil triangle formed with three estimated target parameters, we found that the clay category has shared around 35% of the total area followed by sandy loam (23%). Numéro de notice : A2021-253 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618924 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618924 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97276
in Geocarto international > vol 36 n° 5 [15/03/2021] . - pp 581 - 598[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021051 RAB Revue Centre de documentation En réserve L003 Disponible Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice / Yan Sun in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice Type de document : Article/Communication Auteurs : Yan Sun, Auteur ; Xiao-Ming Li, Auteur Année de publication : 2021 Article en page(s) : pp 2116 - 2131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Austral (océan)
[Termes IGN] bruit thermique
[Termes IGN] étalonnage radiométrique
[Termes IGN] filtrage du bruit
[Termes IGN] glace de mer
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TOPSAR
[Termes IGN] polarisation croisée
[Termes IGN] rapport signal sur bruitRésumé : (Auteur) Sentinel-1 (S1) extra-wide (EW) swath data in cross-polarization (horizontal–vertical, HV or vertical–horizontal, VH) are strongly affected by the scalloping effect and thermal noise, particularly over areas with weak backscattered signals, such as sea surfaces. Although noise vectors in both the azimuth and range directions are provided in the standard S1 EW data for subtraction, the residual thermal noise still significantly affects sea ice detection by the EW data. In this article, we improve the denoising method developed in previous studies to remove the additive noise for the S1 EW data in cross-polarization. Furthermore, we propose a new method for eliminating the residual noise (i.e., multiplicative noise) at the subswath boundaries of the EW data, which cannot be well processed by simply subtracting the reconstructed 2-D noise field. The proposed method of removing both the additive and multiplicative noise was applied to EW HV-polarized images processed using different Instrument Processing Facility (IPF) versions. The results suggest that the proposed algorithm significantly improves the quality of EW HV-polarized images under various sea ice conditions and sea states in the marginal ice zone (MIZ) of the Arctic. This is of great support for the utilization of cross-polarization synthetic aperture radar (SAR) images in wide swaths for intensive sea ice monitoring in polar regions. Numéro de notice : A2021-214 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3005831 Date de publication en ligne : 09/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3005831 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97202
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2116 - 2131[article]Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
[article]
Titre : Polarimetric SAR calibration and residual error estimation when corner reflectors are unavailable Type de document : Article/Communication Auteurs : Lei Shi, Auteur ; Pingxiang Li, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4454 - 4471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit (théorie du signal)
[Termes IGN] coin réflecteur
[Termes IGN] dégradation du signal
[Termes IGN] données polarimétriques
[Termes IGN] étalonnage
[Termes IGN] extraction automatique
[Termes IGN] image radar moirée
[Termes IGN] interruption du signal
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion de BraggRésumé : (auteur) In this article, we propose a polarimetric calibration (PolCal) algorithm to estimate the system crosstalk, cross-polarization (x-pol), and co-polarization (co-pol) channel imbalance (CI) when ground corner reflectors (CRs) are unavailable. The current PolCal process requires at least one trihedral CR to determine the co-pol CI. However, the deployment of ground CRs is costly and may even be impossible in some areas. To calibrate a polarimetric image without CRs, our proposed method automatically extracts the volume-dominated and Bragg-like pixels as a reference to estimate the crosstalk, x-pol, and co-pol CI values. Then, a first-order polynomial model is exploited to fit the co-pol CI to further improve calibration accuracy. In the experimental section, we demonstrate the effectiveness of our proposed method with data from two of China’s newly developed very high-resolution systems. The experiments confirmed that the proposed workflow can be considered as a feasible calibration scheme when the ground deployment of CRs is impossible, and it is also an effective analysis tool for the assessment of calibrated products. Numéro de notice : A2020-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2964732 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2964732 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95109
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4454 - 4471[article]Polarization dependence of azimuth cutoff from quad-pol SAR images / Huimin Li in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)PermalinkGlobal observations of ocean surface winds and waves using spaceborne synthetic aperture radar measurements / Huimin Li (2019)PermalinkPolarization orientation angle and polarimetric SAR scattering characteristics of steep terrain / Jong-Sen Lee in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)PermalinkRelating statistical characteristics of cross-polarized phase difference to speckle noise / Huimin Li in Journal of applied remote sensing, vol 9 (2015)PermalinkForest biomass estimation using texture measurements of high-resolution dual-polarization C-band SAR data / Latifur Rahman Sarker in IEEE Transactions on geoscience and remote sensing, vol 51 n° 6 Tome 1 (June 2013)PermalinkImprovement of stepped-frequency continuous wave Ground-Penetrating Radar cross-range resolution / I. Nicolaescu in IEEE Transactions on geoscience and remote sensing, vol 51 n° 1 Tome 1 (January 2013)PermalinkThe TropiSAR airborne campaign in French Guiana : objectives, description, and observed temporal behavior of the backscatter signal / P. Dubois-Fernandez in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)PermalinkCharacterization of Arctic sea ice thickness using high-resolution spaceborne polarimetric SAR data / J.W. Kim in IEEE Transactions on geoscience and remote sensing, vol 50 n° 1 (January 2012)PermalinkClassification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery / T. Ainsworth in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 5 (September - October 2009)Permalink