Descripteur
Documents disponibles dans cette catégorie (62)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Modeling the VLBI delay for Earth satellites / Frédéric Jaron in Journal of geodesy, vol 93 n°7 (July 2019)
[article]
Titre : Modeling the VLBI delay for Earth satellites Type de document : Article/Communication Auteurs : Frédéric Jaron, Auteur ; Axel Nothnagel, Auteur Année de publication : 2019 Article en page(s) : pp 953 - 961 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] E-GRASP
[Termes IGN] Geodetic Reference Antenna in Space
[Termes IGN] interférométrie à très grande base
[Termes IGN] point de liaison (géodésie)
[Termes IGN] poursuite de satellite
[Termes IGN] propagation du signal
[Termes IGN] retard troposphérique
[Termes IGN] système international de référence célesteRésumé : (auteur) Very-long-baseline interferometry (VLBI) observations of satellites orbiting the Earth and emitting an artificial radio signal have the potential of becoming an important technique for improving the frame ties between celestial and terrestrial reference frames. Modeling the delay of the signal reception at one station with respect to the other station of a baseline is a fundamental step for correlation and parameter estimation. The near-field VLBI delay models developed so far include numerical computation, which may become expensive in terms of computation time. This applies especially when partial derivatives are to be computed, which is the normal case for least squares adjustments. Furthermore, all the models are formulated in the barycentric celestial reference system requiring large numbers. Here we present an analytical expression for the VLBI delay for the special case of satellites orbiting the Earth, observed by ground-based radio telescopes. We analytically solve the light time equation for each signal propagation path from the source to receiver one and to receiver two under the simplification of linearizing the trajectory of the satellite. By approximating the motion of the Earth as uniform during the short signal travel times we are able to work in the geocentric celestial reference system. We investigate differences between numerical and analytical solutions by simulating VLBI observations of Earth satellites. These tests reveal that delays computed with the analytical formula are consistent with those computed with the numerical solution below the detection level of VLBI but at less computational cost. Numéro de notice : A2019-354 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1217-0 Date de publication en ligne : 20/11/2018 En ligne : https://doi.org/10.1007/s00190-018-1217-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93408
in Journal of geodesy > vol 93 n°7 (July 2019) . - pp 953 - 961[article]VLBI observations of GNSS-satellites : from scheduling to analysis / Lucia Plank in Journal of geodesy, vol 91 n° 7 (July 2017)
[article]
Titre : VLBI observations of GNSS-satellites : from scheduling to analysis Type de document : Article/Communication Auteurs : Lucia Plank, Auteur ; Andreas Hellerschmied, Auteur ; Jamie N. McCallum, Auteur ; Johannes Böhm , Auteur ; Jim Lovell, Auteur Année de publication : 2017 Article en page(s) : pp 867 - 880 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] campagne VLBI
[Termes IGN] constellation GNSS
[Termes IGN] point de liaison (géodésie)
[Termes IGN] poursuite de satelliteRésumé : (Auteur) The possibility of observing satellites with the very long baseline interferometry (VLBI) technique has been discussed for several years in the geodetic community, with observations of either existing satellites of the global navigation satellite systems or of satellites dedicated to realise a space tie. Such observations were carried out using the Australian telescopes in Hobart and Ceduna which, for the first time, integrated all the necessary steps: planning the observations (automated scheduling), correlation of the data and the generation of a series of time delay observables suitable for a subsequent geodetic analysis. We report on the development of new and the adaptation of existing routines for observing and data processing, focusing on technology development. The aim was to use methods that are routinely used in geodetic VLBI. A series of test experiments of up to six hours duration was performed, allowing to improve the observations from session to session and revealing new problems still to be solved. The newly developed procedures and programs now enable more observations. Further development assumed, this bears the prospect of being directly applied to the observation of dedicated space-tie satellites. Numéro de notice : A2017-299 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0992-8 En ligne : http://doi.org/10.1007/s00190-016-0992-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85334
in Journal of geodesy > vol 91 n° 7 (July 2017) . - pp 867 - 880[article]Precise orbit determination based on raw GPS measurements / Norbert Zehentner in Journal of geodesy, vol 90 n° 3 (March 2016)
[article]
Titre : Precise orbit determination based on raw GPS measurements Type de document : Article/Communication Auteurs : Norbert Zehentner, Auteur ; Torsten Mayer-Gürr, Auteur Année de publication : 2016 Article en page(s) : pp 275 - 286 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données GPS
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] poursuite de satelliteRésumé : (auteur) Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step. Numéro de notice : A2016-247 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0872-7 En ligne : http://dx.doi.org/10.1007/s00190-015-0872-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80754
in Journal of geodesy > vol 90 n° 3 (March 2016) . - pp 275 - 286[article]Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS / Benjamin Männel in Journal of geodesy, vol 90 n° 2 (February 2016)
[article]
Titre : Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS Type de document : Article/Communication Auteurs : Benjamin Männel, Auteur ; Markus Rothacher, Auteur Année de publication : 2016 Article en page(s) : pp 189-203 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] co-positionnement
[Termes IGN] correction ionosphérique
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement par ITGB
[Termes IGN] poursuite de satellite
[Termes IGN] propagation ionosphériqueRésumé : (auteur) Tracking L-band signals of GNSS satellites by radio telescopes became a new observation type in recent years and will be used to improve reference system realizations and links between Earth- and space-fixed frames. First successful test observations were done, with the drawback of being single-frequency only. In order to correct the ionospheric delay by using GNSS phase observations from co-located receivers, the L4R approach was developed. Based on residuals derived by a least-squares processing of the GNSS geometry-free linear combination corresponding corrections could be derived. As a first validation step L4R corrections were applied to GNSS L1 data analysis. Station coordinate repeatibilities at the 1-cm level were obtained for baselines of a few thousand kilometers. Comparing the derived delay corrections to VLBI ionospheric delays for quasars located in same directions, differences with a standard deviation of 2.2 TECU could be achieved. Numéro de notice : A2016-035 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0865-6 Date de publication en ligne : 27/10/2015 En ligne : https://doi.org/10.1007/s00190-015-0865-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79512
in Journal of geodesy > vol 90 n° 2 (February 2016) . - pp 189-203[article]
Titre : Co-location of geodetic observation techniques in space Type de document : Thèse/HDR Auteurs : Benjamin Männel, Auteur Editeur : Zurich : Schweizerischen Geodatischen Kommission / Commission Géodésique Suisse Année de publication : 2016 Autre Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Collection : Geodätisch-Geophysikalische Arbeiten in der Schweiz, ISSN 0257-1722 num. 97 Importance : 200 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-3-908440-43-7 Note générale : bibliographie
A thesis submitted to attain the degree of Doctor of Sciences of ETH Zurich (Eidg. Technische Hochschule Zürich)Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] antenne GPS
[Termes IGN] Bernese
[Termes IGN] centre de phase
[Termes IGN] co-positionnement
[Termes IGN] données GRACE
[Termes IGN] géocentre
[Termes IGN] interférométrie à très grande base
[Termes IGN] International Terrestrial Reference System
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] positionnement par GPS
[Termes IGN] poursuite de satellite
[Termes IGN] propagation ionosphérique
[Termes IGN] repère de référence
[Termes IGN] système international de référence célesteIndex. décimale : 30.60 Géodésie spatiale Résumé : (auteur) This thesis describes the combination of geodetic observation techniques on-board satellites. This socalled co-location in space provides a considerable potential regarding the improvements needed to realize a long-term accurate and stable terrestrial reference frame. The space ties (i.e., the offset vectors between the on-board sensors) introduces new geometrical connections between sensors of dfferent space geodetic techniques. This space ties can be provided easily to each fundamental site via space geodetic observations. Consequently, co-location in space allows to assess technique-specific error sources as systematic effects can be addressed either to a certain station or to a certain technique. Moreover, the additional introduced orbit dynamics improve the estimation of several geodetic parameters. Within this thesis the following core topics concerning co-location in space are discussed: orbit determination, the combination of ground and space GNSS observations, and VLBI Earth-orbiting satellite tracking. Highly accurate orbit determination is the prerequisite for a suitable co-location in space. Based on the Earth observation satellite missions GRACE, GOCE, and OSTM/Jason-2 orbit determination and the impact of modeling non gravitational perturbations is studied. The overall reached orbit accuracies are at the level of a few centimeters. The combination of ground and space-geodetic GNSS observations is studied based on the GPS observations derived by 53 ground stations and the four LEOs (low Earth orbiter). Adding one LEO to the ground-only processing decreases the formal errors of weekly geocenter estimates by around 20% which is eight times more than expected due to the increased number of observations. This shows the considerable potential of the combination of ground and LEO data. Comparing the derived geocenter time series against results from satellite laser ranging (SLR) shows a good agreement for annual amplitudes, whereas the annual phases shows considerable discrepancies in the x- and the z-component. Geocenter coordinates derived from surface load density coeficients estimated in a long-term solution show a better agreement to SLR solutions but without a significant impact of additional LEOs. Using the gravitational constraint GPS satellite antenna phase center offsets were estimated based on ground and LEO observations. The results show a significant benefit for the horizontal offsets as the introduced LEOs help to dissolve limiting correlations. Concerning single-frequency VLBI satellite tracking the L4R method is introduced to derive ionosphere delay corrections based on co-located GNSS observations. A 1 cm daily station coordinate repeatability is achieved in a single-frequency GNSS processing while introducing the L4R corrections. Differences to ionospheric delays derived from VLBI observations show also a good agreement. As VLBI satellite tracking is currently in an experimental stage Monte-Carlo simulations were performed for eight different satellite orbit types. For a GNSS constellation tracking, station coordinate repeatabilities are at the level of 0.7 and 1.2 cm for a regional and a global network, respectively. Station coordinate repeatabilities of around 1 cm were derived for simulated VLBI observation to a fictitious LEO with an altitude of 2000 km. The station coordinates estimated from simulated observations to E-GRIP and E-GRASP/Eratosthenes show larger uncertainties. Based on the results suggestions for future action items regarding co-location in space were formulated. The most important recommendations are, that the combination of ground- and space GNSS observations provides a considerable benefit for the determination of several parameters and that ionosphere delay corrections should be derived from co-located GNSS observations. Note de contenu : 1- Motivation and Introduction
2- Geodetic Observation Techniques in a Nutshell
3- Reference Systems and the Combination and Co-location of Space Geodetic Techniques
4- Investigations on GPS-based Precise Orbit Determination for Low Earth Orbiters
5- Investigations on the Combined Processing of Ground- and Space-based GPS Observations
6- Investigations on VLBI Satellite Tracking
7- Conclusions and OutlookNuméro de notice : 21987 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : PhD : Sciences : ETH Zurich : 2016 DOI : 10.3929/ethz-a-010811791 En ligne : https://www.research-collection.ethz.ch/handle/20.500.11850/125751 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91982 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 21987-01 30.70 Livre Centre de documentation Géodésie Disponible PermalinkAnalysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters / Da Kuang in Journal of geodesy, vol 89 n° 5 (May 2015)PermalinkGravity field processing with enhanced numerical precision for LL-SST missions / Ilias Daras in Journal of geodesy, vol 89 n° 2 (February 2015)PermalinkPrecise station positions from VLBI observations to satellites: a simulation study / Lucia Plank in Journal of geodesy, vol 88 n° 7 (July 2014)PermalinkIntersatellite laser ranging instrument for the GRACE follow-on mission / B. Sheard in Journal of geodesy, vol 86 n° 12 (December 2012)PermalinkPrecise orbit determination of GIOVE-B based on the CONGO network / P. Steinberger in Journal of geodesy, vol 85 n° 6 (June 2011)PermalinkGeocenter variations derived from GPS tracking of the GRACE satellites / Z. Kang in Journal of geodesy, vol 83 n° 10 (October 2009)PermalinkGNSS / Scott Gleason (2009)PermalinkVariations in the accuracy of gravity recovery due to ground track variability: GRACE, CHAMP, and GOCE / J. Klokocnik in Journal of geodesy, vol 82 n° 12 (December 2008)PermalinkPseudo-stochastic orbit modeling of low earth satellites using the Global Positioning System / Adrian Jäggi (2007)Permalink