IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 54 n° 8Paru le : 01/08/2016 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierUnderground incrementally deployed magneto-inductive 3-D positioning network / Traian E. Abrudan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Underground incrementally deployed magneto-inductive 3-D positioning network Type de document : Article/Communication Auteurs : Traian E. Abrudan, Auteur ; Zhuoling Xiao, Auteur ; Andrew Markham, Auteur ; Niki Trigoni, Auteur Année de publication : 2016 Article en page(s) : pp 4376 - 4391 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Topographie moderne
[Termes IGN] itération
[Termes IGN] lever souterrain
[Termes IGN] mine
[Termes IGN] positionnement en intérieur
[Termes IGN] précision des données
[Termes IGN] sous-solRésumé : (Auteur) Underground mines are characterized by a network of intersecting tunnels and sharp turns, an environment which is particularly challenging for radiofrequency based positioning systems due to extreme multipath, non-line-of-sight propagation, and poor anchor geometry. Such systems typically require a dense grid of devices to enable 3-D positioning. Moreover, the precise position of each anchor node needs to be precisely surveyed, a particularly challenging task in underground environments. Magneto-inductive (MI) positioning, which provides 3-D position and orientation from a single transmitter and penetrates thick layers of soil and rock without loss, is a more promising approach, but so far has only been investigated in simple point-to-point contexts. In this paper, we develop a novel MI positioning approach to cover an extended underground 3-D space with unknown geometry using a rapidly deployable anchor network. The key to our approach is that the position of only a single anchor needs to be accurately surveyed-the positions of all secondary anchors are determined using an iterative refinement process using measurements obtained from receivers within the network. This avoids the particularly challenging and time-intensive task in an underground environment of accurately surveying the positions of all of the transmitters. We also demonstrate how measurements obtained from multiple transmitters can be fused to improve localization accuracy. We validate the proposed approach in a man-made cave and show that, with a portable system that took 5 min to deploy, we were able to provide accurate through-the-earth location capability to nodes placed along a suite of tunnels. Numéro de notice : A2016-883 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2540722 En ligne : https://doi.org/10.1109/TGRS.2016.2540722 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83047
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4376 - 4391[article]Soil moisture retrieval in agricultural fields using adaptive model-based polarimetric decomposition of SAR data / Lian He in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Soil moisture retrieval in agricultural fields using adaptive model-based polarimetric decomposition of SAR data Type de document : Article/Communication Auteurs : Lian He, Auteur ; Rocco Panciera, Auteur Année de publication : 2016 Article en page(s) : pp 4445 - 4460 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] biomasse
[Termes IGN] cultures
[Termes IGN] décomposition d'image
[Termes IGN] données polarimétriques
[Termes IGN] filtre adaptatif
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] polarimétrie radarRésumé : (Auteur) The aim of this paper was to estimate soil moisture in agricultural crop fields from fully polarimetric L-band synthetic aperture radar (SAR) data through the polarimetric decomposition of the SAR coherency matrix. A nonnegative-eigenvalue-decomposition scheme, together with an adaptive volume scattering model, is extended to an adaptive model-based decomposition (MBD) (Adaptive MBD) model for soil moisture retrieval. The Adaptive MBD can ensure nonnegative decomposed scattering components and allows two parameters (i.e., the mean orientation angle and a degree of randomness) to be determined to characterize the volume scattering. Its performance was tested using airborne SAR data and coincident ground measurements collected over agricultural fields in southeastern Australia and compared with previous MBD methods (i.e., the Freeman three-component decomposition using the extended Bragg model, the Yamaguchi three-component decomposition, and an iterative generalized hybrid decomposition). The results obtained with the newly proposed decomposition scheme agreed well with expectations based on observed plant structure and biomass levels. The new method was superior in tracking soil moisture dynamics with respect to previous decomposition methods in our study area, with root-mean-square error of soil moisture estimations being 0.10 and 0.14 m3/m3, respectively, for surface and double-bounce components. However, large variability in the achieved soil moisture accuracy was observed, depending on the presence of row structures in the underlying soil surface. Numéro de notice : A2016-884 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2542214 En ligne : https://doi.org/10.1109/TGRS.2016.2542214 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83048
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4445 - 4460[article]Radiometric correction of airborne radar images over forested terrain with topography / Marc Simard in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Radiometric correction of airborne radar images over forested terrain with topography Type de document : Article/Communication Auteurs : Marc Simard, Auteur ; Bryan V. Riel, Auteur ; Michael Denbina, Auteur ; Scott Hensley, Auteur Année de publication : 2016 Article en page(s) : pp 4488 - 4500 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] canopée
[Termes IGN] correction radiométrique
[Termes IGN] évaluation des données
[Termes IGN] forêt
[Termes IGN] homomorphisme
[Termes IGN] image aérienne
[Termes IGN] image radar
[Termes IGN] réflectivité
[Termes IGN] reliefRésumé : (Auteur) Radiometric correction of radar images is essential to produce accurate estimates of biophysical parameters related to forest structure and biomass. We present a new algorithm to correct radiometry for 1) terrain topography and 2) variations of canopy reflectivity with viewing and tree-terrain geometry. This algorithm is applicable to radar images spanning a wide range of incidence angles over terrain with significant topography and can also take into account aircraft attitude, antenna steering angle, and target geometry. The approach includes elements of both homomorphic and heteromorphic terrain corrections to correct for topographic effects and is followed by an additional radiometric correction to compensate for variations of canopy reflectivity with viewing and tree-terrain geometry. The latter correction is based on lookup tables and enables derivation of biophysical parameters irrespective of viewing geometry and terrain topography. We evaluate the performance of the new algorithm with airborne radar data and show that it performs better than classical homomorphic methods followed by cosine-based corrections. Numéro de notice : A2016-885 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2543142 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2543142 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83049
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4488 - 4500[article]Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study / Lei Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study Type de document : Article/Communication Auteurs : Lei Wang, Auteur ; K. Andrea Scott, Auteur ; Linlin Xu, Auteur ; David A. Clausi, Auteur Année de publication : 2016 Article en page(s) : pp 4524 - 4533 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification par réseau neuronal
[Termes IGN] eau de fonte
[Termes IGN] glace de mer
[Termes IGN] iceberg
[Termes IGN] image Radarsat
[Termes IGN] navigation maritime
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) High-resolution ice concentration maps are of great interest for ship navigation and ice hazard forecasting. In this case study, a convolutional neural network (CNN) has been used to estimate ice concentration using synthetic aperture radar (SAR) scenes captured during the melt season. These dual-pol RADARSAT-2 satellite images are used as input, and the ice concentration is the direct output from the CNN. With no feature extraction or segmentation postprocessing, the absolute mean errors of the generated ice concentration maps are less than 10% on average when compared with manual interpretation of the ice state by ice experts. The CNN is demonstrated to produce ice concentration maps with more detail than produced operationally. Reasonable ice concentration estimations are made in melt regions and in regions of low ice concentration. Numéro de notice : A2016-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2543660 En ligne : https://doi.org/10.1109/TGRS.2016.2543660 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83066
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4524 - 4533[article]Magnetic induction-based positioning in distorted environments / Orfeas Kypris in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Magnetic induction-based positioning in distorted environments Type de document : Article/Communication Auteurs : Orfeas Kypris, Auteur ; Traian E. Abrudan, Auteur ; Andrew Markham, Auteur Année de publication : 2016 Article en page(s) : pp 4605 - 4612 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] champ magnétique
[Termes IGN] induction magnétique
[Termes IGN] métal
[Termes IGN] méthode des éléments finis
[Termes IGN] modèle analytique
[Termes IGN] positionnement en intérieurRésumé : (Auteur) Ferrous and highly conductive materials distort low-frequency magnetic fields and can significantly increase magnetoinductive positioning errors. In this paper, we use the image theory in order to formulate an analytical channel model for the magnetic field of a quasi-static magnetic dipole positioned above a perfectly conducting half-space. The proposed model can be used to compensate for the distorting effects that metallic reinforcement bars (rebars) within the floor impose on the magnetic field of a magnetoinductive transmitter node in an indoor single-story environment. Good agreement is observed between the analytical solution and numerical solutions obtained from 3-D finite-element simulations. Experimental results indicate that the image theory model shows improvement over the free-space dipole model in estimating positions in the distorted environment, typically reducing positioning errors by 22% in 90% of the cases and 26% in 40% of the cases. No prior information on the geometry of the metallic distorters was available, making this essentially a “blind” technique. Numéro de notice : A2016-887 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2546461 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2546461 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83067
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4605 - 4612[article]Disaggregation of remotely sensed soil moisture in heterogeneous landscapes using holistic structure-based models / Subit Chakrabarti in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Disaggregation of remotely sensed soil moisture in heterogeneous landscapes using holistic structure-based models Type de document : Article/Communication Auteurs : Subit Chakrabarti, Auteur ; Jasmeet Judge, Auteur ; Tara Bongiovanni, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 4629 - 4641 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] cultures
[Termes IGN] désagrégation
[Termes IGN] Floride (Etats-Unis)
[Termes IGN] humidité du sol
[Termes IGN] modèle de régressionRésumé : (Auteur) In this paper, a novel machine learning algorithm is presented for disaggregation of satellite soil moisture (SM) based on self-regularized regressive models (SRRMs) using high-resolution correlated information from auxiliary sources. It includes regularized clustering that assigns soft memberships to each pixel at a fine scale followed by a kernel regression that computes the value of the desired variable at all pixels. Coarse-scale remotely sensed SM was disaggregated from 10 to 1 km using land cover (LC), precipitation, land surface temperature, leaf area index, and in situ observations of SM. This algorithm was evaluated using multiscale synthetic observations in NC Florida for heterogeneous agricultural LCs. It was found that the rmse for 96% of the pixels was less than 0.02 m 3/m3. The clusters generated represented the data well and reduced the rmse by up to 40% during periods of high heterogeneity in LC and meteorological conditions. The Kullback-Leibler divergence (KLD) between the true SM and the disaggregated estimates is close to zero, for both vegetated and bare-soil LCs. The disaggregated estimates were compared with those generated by the principle of relevant information (PRI) method. The rmse for the PRI disaggregated estimates is higher than the rmse for the SRRM on each day of the season. The KLD of the disaggregated estimates generated by the SRRM is at least four orders of magnitude lower than those for the PRI disaggregated estimates, whereas the computational time needed was reduced by three times. The results indicate that the SRRM can be used for disaggregating SM with complex nonlinear correlations on a grid with high accuracy. Numéro de notice : A2016-888 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2547389 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2547389 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83068
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4629 - 4641[article]Spaceborne synthetic aperture radar data focusing on multicore-based architectures / Pasquale Imperatore in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Spaceborne synthetic aperture radar data focusing on multicore-based architectures Type de document : Article/Communication Auteurs : Pasquale Imperatore, Auteur ; Antonio Pepe, Auteur ; Riccardo Lanari, Auteur Année de publication : 2016 Article en page(s) : pp 4712 - 4731 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] architecture orientée services
[Termes IGN] données multisources
[Termes IGN] focalisation
[Termes IGN] image radar moirée
[Termes IGN] implémentation (informatique)
[Termes IGN] partage de données localisées
[Termes IGN] processeur multicoeurRésumé : (Auteur) This paper describes a general-purpose parallel scheme for efficiently focusing synthetic aperture radar (SAR) data on multicore-based shared-memory architectures. The rationale of the proposed tiling-based parallel focusing model is first discussed, and then, its implementation structure is illustrated. The adopted parallel solution, which is based on a canonical processing pattern, exploits a segmented-block-based approach and works successfully on data acquired by different spaceborne SAR platforms. Insofar as a significant portion of the focusing algorithm is amenable to tiling, our approach decomposes the problem into simpler subproblems of the same type, also providing a suitable mechanism to explicitly control the granularity of computation through the proper specification of the tiling at the different stages of the algorithm itself. Relevant implementation makes use of multithreading and high-performance libraries. Achievable performances are then experimentally investigated by quantifying the benefit of the parallelism incorporated into the prototype solution, thus demonstrating the validity of our approach. Accordingly, canonical performance metrics have been evaluated, and the pertinent scalability has been examined on different multicore architectures. Furthermore, in order to emphasize the practical ability of the proposed parallel model implementation to efficiently deal with data of different SAR sensors, a performance analysis has been carried out in different realistic scenarios including data acquired by the Envisat/ASAR, RADARSAT-1, and COSMO-SkyMed platforms. Numéro de notice : A2016-889 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2550201 En ligne : https://doi.org/10.1109/TGRS.2016.2550201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83069
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4712 - 4731[article]A local structure and direction-aware optimization approach for three-dimensional tree modeling / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : A local structure and direction-aware optimization approach for three-dimensional tree modeling Type de document : Article/Communication Auteurs : Zhen Wang, Auteur ; Liqiang Zhang, Auteur ; Tian Fang, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 4749 - 4757 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] optimisation (mathématiques)
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] squelettisationRésumé : (Auteur) Modeling 3-D trees from terrestrial laser scanning (TLS) point clouds remains a challenging task for several well-known reasons, including their complex structure and severe occlusions. In order to accurately reconstruct 3-D tree models from TLS point clouds that typically suffer from significant occlusions, in this paper, a novel local structure and direction-aware approach is presented to successfully complete missing structures of trees. In this method, we first extract the coarse tree skeleton from the input point cloud, and thus, the branch dominant direction and the point density of each branch are obtained. By a skeleton-based Laplacian algorithm, the point cloud is further shrunk into a skeleton point cloud to highlight the branch dominant direction of each branch. For obtaining even more accurate point densities, a dictionary-based algorithm is utilized to learn and reconstruct the local structure. Finally, the branch dominant direction and point density are integrated into an iterative optimization process to recover the missing data. Extensive experimental results have shown that the proposed method is very robust to incomplete data sets, and it is capable of accurately reconstructing 3-D trees, which are partially, or even to a large extent, missing from the input point cloud. Numéro de notice : A2016-890 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2551286 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2551286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83070
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4749 - 4757[article]Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing / Paris V. Giampouras in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing Type de document : Article/Communication Auteurs : Paris V. Giampouras, Auteur ; Konstantinos E. Themelis, Auteur ; Athanasios A. Rontogiannis, Auteur ; Konstantinos D. Koutroumbas, Auteur Année de publication : 2016 Article en page(s) : pp 4775 - 4789 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données clairsemées
[Termes IGN] image hyperspectrale
[Termes IGN] matrice creuseRésumé : (Auteur) In a plethora of applications dealing with inverse problems, e.g., image processing, social networks, compressive sensing, and biological data processing, the signal of interest is known to be structured in several ways at the same time. This premise has recently guided research into the innovative and meaningful idea of imposing multiple constraints on the unknown parameters involved in the problem under study. For instance, when dealing with problems whose unknown parameters form sparse and low-rank matrices, the adoption of suitably combined constraints imposing sparsity and low rankness is expected to yield substantially enhanced estimation results. In this paper, we address the spectral unmixing problem in hyperspectral images. Specifically, two novel unmixing algorithms are introduced in an attempt to exploit both spatial correlation and sparse representation of pixels lying in the homogeneous regions of hyperspectral images. To this end, a novel mixed penalty term is first defined consisting of the sum of the weighted ℓ1 and the weighted nuclear norm of the abundance matrix corresponding to a small area of the image determined by a sliding square window. This penalty term is then used to regularize a conventional quadratic cost function and impose simultaneous sparsity and low rankness on the abundance matrix. The resulting regularized cost function is minimized by: 1) an incremental proximal sparse and low-rank unmixing algorithm; and 2) an algorithm based on the alternating direction method of multipliers. The effectiveness of the proposed algorithms is illustrated in experiments conducted both on simulated and real data. Numéro de notice : A2016-891 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2551327 En ligne : https://doi.org/10.1109/TGRS.2016.2551327 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83071
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4775 - 4789[article]Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification / Hao Wu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Saurabh Prasad, Auteur Année de publication : 2016 Article en page(s) : pp 4882 - 4895 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] problème de DirichletRésumé : (Auteur) Active learning is an area of significant ongoing research interest for the classification of remotely sensed data, where obtaining efficient training data is both time consuming and expensive. The goal of active learning is to achieve high classification performance by querying as few samples as possible from a large unlabeled data pool. Traditional active learning frameworks all assume the existence of labeled samples for all classes of interest. However, in real-world applications, the unlabeled data pool may contain data from unknown classes that we are not aware of in advance, and a quick detection of them is useful for enriching our training set. In this scenario, traditional active learning methods may not effectively and rapidly detect the unknown classes. We proposed an active learning framework which provides robust classification performance with minimum manual labeling effort while simultaneously discovering unknown (missing) classes. The discovery of unknown classes is particularly suited to an active learning framework where an annotator is in the loop. A Dirichlet process mixture model is utilized in our proposed method to cluster the labeled and unlabeled samples as a whole. If unknown classes exist, they will emerge as new clusters which are different from other existing clusters occupied by known classes, and then, the proposed query strategy will give priority to querying samples in the new clusters. We present experimental results with hyperspectral data to show that our method provides better classification performance compared to existing active learning methods with or without unknown classes. Numéro de notice : A2016-892 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2552507 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2552507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83072
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4882 - 4895[article]