Descripteur
Documents disponibles dans cette catégorie (93)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Allowing context to speak: the progressive case study method for cadastral systems research / Simon Hull in Survey review, vol 55 n° 390 (May 2023)
[article]
Titre : Allowing context to speak: the progressive case study method for cadastral systems research Type de document : Article/Communication Auteurs : Simon Hull, Auteur ; Jennifer Whittal, Auteur Année de publication : 2023 Article en page(s) : pp 205 - 215 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cadastre
[Termes IGN] droit coutumier
[Termes IGN] droit foncier
[Termes IGN] prise en compte du contexte
[Termes IGN] raisonnement déductif
[Termes IGN] raisonnement inductifRésumé : (auteur) For research involving customary land rights, "context is key" because every context brings specific nuances for consideration. Failure to account for context runs the risk of irrelevance, unintended consequences and/or failure. We present a research method that allows context to speak: the progressive case study. The approach combines deductive case study with inductive grounded theory approaches. The results are used to propose a framework for guiding cadastral systems development in customary land rights contexts. This paper presents the methodology, which should be useful for researchers, NGOs and multinational organisations doing development programming in developing contexts. Numéro de notice : A2023-211 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/00396265.2022.2045457 Date de publication en ligne : 06/03/2022 En ligne : https://doi.org/10.1080/00396265.2022.2045457 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103065
in Survey review > vol 55 n° 390 (May 2023) . - pp 205 - 215[article]Context-aware network for semantic segmentation toward large-scale point clouds in urban environments / Chun Liu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Context-aware network for semantic segmentation toward large-scale point clouds in urban environments Type de document : Article/Communication Auteurs : Chun Liu, Auteur ; Doudou Zeng, Auteur ; Akram Akbar, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5703915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] agrégation de détails
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] prise en compte du contexte
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) Point cloud semantic segmentation in urban scenes plays a vital role in intelligent city modeling, autonomous driving, and urban planning. Point cloud semantic segmentation based on deep learning methods has achieved significant improvement. However, it is also challenging for accurate semantic segmentation in large scenes due to complex elements, variety of scene classes, occlusions, and noise. Besides, most methods need to split the original point cloud into multiple blocks before processing and cannot directly deal with the point clouds on a large scale. We propose a novel context-aware network (CAN) that can directly deal with large-scale point clouds. In the proposed network, a local feature aggregation module (LFAM) is designed to preserve rich geometric details in the raw point cloud and reduce the information loss during feature extraction. Then, in combination with a global context aggregation module (GCAM), capture long-range dependencies to enhance the network feature representation and suppress the noise. Finally, a context-aware upsampling module (CAUM) is embedded into the proposed network to capture the global perception from a broad perspective. The ensemble of low-level and high-level features facilitates the effectiveness and efficiency of 3-D point cloud feature refinement. Comprehensive experiments were carried out on three large-scale point cloud datasets in both outdoor and indoor environments to evaluate the performance of the proposed network. The results show that the proposed method outperformed the state-of-the-art representative semantic segmentation networks, and the overall accuracy (OA) of Tongji-3D, Semantic3D, and Stanford large-scale 3-D indoor spaces (S3DIS) is 96.01%, 95.0%, and 88.55%, respectively. Numéro de notice : A2022-561 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3182776 Date de publication en ligne : 13/06/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3182776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101188
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 5703915[article]Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network / Da He in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
[article]
Titre : Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network Type de document : Article/Communication Auteurs : Da He, Auteur ; Qian Shi, Auteur ; Xiaoping Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102667 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage profond
[Termes IGN] arbre hors forêt
[Termes IGN] arbre urbain
[Termes IGN] base de données localisées
[Termes IGN] Chine
[Termes IGN] image Sentinel-MSI
[Termes IGN] métropole
[Termes IGN] Pékin (Chine)
[Termes IGN] prise en compte du contexte
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Contrast to the global forest, few trees live in cities but contribute significantly to urban environment and human health. However, the classical satellite-derived land cover/forest cover products with limited resolution are not fine enough for the identification of urban tree, which is usually appeared in small size and intersected with infrastructure. To relieve the dilemma, this study developed an urban tree specific sub-pixel mapping (SPM) architecture with deep learning approach, which aimed to generate 2m fine-scale urban tree cover product from 10 m Sentinel-2 images for large-scale area of 34 metropolises in China. The proposed approach has remarkable reconstruction ability for delineating the contextual characteristic of the urban tree patterns, and reliable generalization ability to large-scale area. In addition, this study creates a large-volume urban tree cover dataset (UTCD) with 0.13 billion urban tree samples at 2 m resolution, which fills the deficiency of standard dataset in urban tree cover research field. Quantitative analysis of our products was conducted on two typical study sites of Beijing and Wuhan. The results show that our products recover averagely more than 58.72% of urban tree covers that have been underestimated in the existing land cover/forest cover products, and outperforms the state-of-the-art approach both visually and quantitatively, by averagely 11.31% improvement in overall accuracy. From our annual products during 2016–2020, we found an evolution characteristic of urban tree cover: it is more stable in developed cities like Beijing, while more fluctuated in developing cities like Wuhan, and the alteration are usually concentrated at the outer-ring of downtown, which may be caused by the municipal planning and the land development of real estate industry. Numéro de notice : A2022-073 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2021.102667 En ligne : https://doi.org/10.1016/j.jag.2021.102667 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99438
in International journal of applied Earth observation and geoinformation > vol 106 (February 2022) . - n° 102667[article]CIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica, vol 26 n° 1 (January 2022)
[article]
Titre : CIME: Context-aware geolocation of emergency-related posts Type de document : Article/Communication Auteurs : Gabriele Scalia, Auteur ; Chiara Francalanci, Auteur ; Barbara Pernici, Auteur Année de publication : 2022 Article en page(s) : pp 125 - 157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] cartographie d'urgence
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] exploration de données
[Termes IGN] géolocalisation
[Termes IGN] géoréférencement
[Termes IGN] Grande-Bretagne
[Termes IGN] implémentation (informatique)
[Termes IGN] inondation
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] prise en compte du contexte
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Information extracted from social media has proven to be very useful in the domain of emergency management. An important task in emergency management is rapid crisis mapping, which aims to produce timely and reliable maps of affected areas. During an emergency, the volume of emergency-related posts is typically large, but only a small fraction is relevant and help rapid mapping effectively. Furthermore, posts are not useful for mapping purposes unless they are correctly geolocated and, on average, less than 2% of posts are natively georeferenced. This paper presents an algorithm, called CIME, that aims to identify and geolocate emergency-related posts that are relevant for mapping purposes. While native geocoordinates are most often missing, many posts contain geographical references in their metadata, such as texts or links that can be used by CIME to filter and geolocate information. In addition, social media creates a social network and each post can be enhanced with indirect information from the post’s network of relationships with other posts (for example, a retweet can be associated with other geographical references which are useful to geolocate the original tweet). To exploit all this information, CIME uses the concept of context, defined as the information characterizing a post both directly (the post’s metadata) and indirectly (the post’s network of relationships). The algorithm was evaluated on a recent major emergency event demonstrating better performance with respect to the state of the art in terms of total number of geolocated posts, geolocation accuracy and relevance for rapid mapping. Numéro de notice : A2022-204 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00446-x Date de publication en ligne : 28/07/2021 En ligne : https://doi.org/10.1007/s10707-021-00446-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100011
in Geoinformatica > vol 26 n° 1 (January 2022) . - pp 125 - 157[article]Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 26 n° 1 (January 2022)
[article]
Titre : Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] comportement
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] covariance
[Termes IGN] données spatiotemporelles
[Termes IGN] historique des données
[Termes IGN] interface web
[Termes IGN] mobilité territoriale
[Termes IGN] prise en compte du contexte
[Termes IGN] réseau social géodépendant
[Termes IGN] service fondé sur la position
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods suggest unvisited locations to their users. Many existing location recommendation methods focus on the spatial, social and temporal aspects of human movements. However, contextual information is also invaluable to location recommendation methods and has the great potential for explaining what triggers users to show different behaviors. CLR learns the response of the users to contextual variables based on their own history and the history of similar behaving users. In this paper, we propose a contextual location recommendation method named Contextual Location Recommendation (CLR) that learns the intention and spatial responses of users to various contextual triggers using the historical check-in and contextual information. CLR starts with a co-variance analysis to reduce dimensionality of the check-in data and then uses an optimized version of the random walk with restart to extract hidden user responses to contextual triggers. A tensor factorization is used to build a latent-factor model to predict the user’s intention response with the given set of contextual triggers. Based on the intention response of the user, a contextual spatial component identifies a set of matching locations accessible to the user by estimating the probability distribution of the location of the user and the popularity probability of locations under the contextual settings. Experimental results on three real-world datasets show that CLR improves the recommendation precision by 35% compared to the best-performing baseline recommendation method. Numéro de notice : A2022-203 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00437-y Date de publication en ligne : 02/06/2021 En ligne : https://doi.org/10.1007/s10707-021-00437-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100008
in Geoinformatica > vol 26 n° 1 (January 2022) . - pp 1 - 28[article]Scalable surface reconstruction with Delaunay-Graph neural networks / Raphaël Sulzer in Computer graphics forum, vol 40 n° 5 (2021)PermalinkA graph-based semi-supervised approach to classification learning in digital geographies / Pengyuan Liu in Computers, Environment and Urban Systems, vol 86 (March 2021)PermalinkPBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)PermalinkPyramidal framework: guidance for the next generation of GIS spatial-temporal models / Cyril Carré in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)PermalinkUrban agglomeration worsens spatial disparities in climate adaptation / Seung-Kyum Kim in Scientific reports, vol 11 (2021)PermalinkLearning to translate land-cover maps: Several multi-dimensional context-wise solutions / Luc Baudoux (2021)PermalinkTélédétection et intégration de connaissances via la modélisation spatiale pour une cartographie plus cohérente des systèmes agricoles complexes / Arthur Crespin-Boucaud (2021)PermalinkContext-aware similarity of GPS trajectories / Radu Mariescu-Istodor in Journal of location-based services, vol 14 n° 4 ([01/11/2020])PermalinkContext-aware convolutional neural network for object detection in VHR remote sensing imagery / Yiping Gong in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)PermalinkAméliorer la recherche de victimes en montagne grâce à la gestion d'hypothèses et à la géovisualisation / Matthieu Viry in Cartes & Géomatique, n° 241-242 (décembre 2019)Permalink