Journal of Spatial Information Science, JoSIS / Duckham, Matt . n° 12Paru le : 01/03/2016 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierµ-shapes: Delineating urban neighborhoods using volunteered geographic information / Matt Aadland in Journal of Spatial Information Science, JoSIS, n° 12 (March 2016)
[article]
Titre : µ-shapes: Delineating urban neighborhoods using volunteered geographic information Type de document : Article/Communication Auteurs : Matt Aadland, Auteur ; Christopher Farah, Auteur ; Kevin Magee, Auteur Année de publication : 2016 Article en page(s) : pp 29 - 43 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de variance
[Termes IGN] centroïde
[Termes IGN] délimitation
[Termes IGN] données localisées des bénévoles
[Termes IGN] matrice de confusion
[Termes IGN] répertoire toponymique
[Termes IGN] sous ensemble flou
[Termes IGN] traitement de données localisées
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone urbaineRésumé : (auteur) Urban neighborhoods are a unique form of geography in that their boundaries rely on a social definition rather than a well-defined physical or administrative boundary. Currently, geographic gazetteers capture little more than then the centroid of a neighborhood, limiting potential applications of the data. In this paper, we present µ-shapes, an algorithm that employs fuzzy-set theory to model neighborhood boundaries suitable for populating gazetteers using volunteered geographic information (VGI). The algorithm is evaluated using a reference dataset and VGI from the Map Kibera Project. A confusion matrix comparison between the reference dataset and µ-shape's output demonstrated high sensitivity and accuracy. Analysis of variance indicated that the algorithm was able to distinguish between boundary and interior blocks. This suggests that, given the existing state of GIS technology, the µ-shapes algorithm can enable neighborhood-related queries that incorporate spatial uncertainty, e.g., find all restaurants within the core of a neighborhood. Numéro de notice : A2016-954 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : sans En ligne : http://dx.doi.org/10.5311/JOSIS.2016.12.240 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83466
in Journal of Spatial Information Science, JoSIS > n° 12 (March 2016) . - pp 29 - 43[article]