Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification par arbre de décision > classification par forêts d'arbres décisionnels
classification par forêts d'arbres décisionnelsSynonyme(s)Random forests classification forêts aléatoiresVoir aussi |
Documents disponibles dans cette catégorie (314)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal / Cristina Alegria in Forests, vol 14 n° 3 (March 2023)
[article]
Titre : Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal Type de document : Article/Communication Auteurs : Cristina Alegria, Auteur ; Alice M. Almeida, Auteur ; Natalia Roque, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 591 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution spatiale
[Termes IGN] entropie maximale
[Termes IGN] gestion forestière
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] Pinus pinaster
[Termes IGN] Portugal
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) To date, a variety of species potential distribution mapping approaches have been used, and the agreement in maps produced with different methodological approaches should be assessed. The aims of this study were: (1) to model Maritime pine potential distributions for the present and for the future under two climate change scenarios using the machine learning Maximum Entropy algorithm (MaxEnt); (2) to update the species ecological envelope maps using the same environmental data set and climate change scenarios; and (3) to perform an agreement analysis for the species distribution maps produced with both methodological approaches. The species distribution maps produced by each of the methodological approaches under study were reclassified into presence–absence binary maps of species to perform the agreement analysis. The results showed that the MaxEnt-predicted map for the present matched well the species’ current distribution, but the species ecological envelope map, also for the present, was closer to the species’ empiric potential distribution. Climate change impacts on the species’ future distributions maps using the MaxEnt were moderate, but areas were relocated. The 47.3% suitability area (regular-medium-high), in the present, increased in future climate change scenarios to 48.7%–48.3%. Conversely, the impacts in species ecological envelopes maps were higher and with greater future losses than the latter. The 76.5% suitability area (regular-favourable-optimum), in the present, decreased in future climate change scenarios to 58.2%–51.6%. The two approaches combination resulted in a 44% concordance for the species occupancy in the present, decreasing around 30%–35% in the future under the climate change scenarios. Both methodologies proved to be complementary to set species’ best suitability areas, which are key as support decision tools for planning afforestation and forest management to attain fire-resilient landscapes, enhanced forest ecosystems biodiversity, functionality and productivity. Numéro de notice : A2023-167 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14030591 Date de publication en ligne : 16/03/2023 En ligne : https://doi.org/10.3390/f14030591 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102904
in Forests > vol 14 n° 3 (March 2023) . - n° 591[article]The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]A comparative assessment of the statistical methods based on urban population density estimation / Merve Yılmaz in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : A comparative assessment of the statistical methods based on urban population density estimation Type de document : Article/Communication Auteurs : Merve Yılmaz, Auteur Année de publication : 2023 Article en page(s) : n° 2152494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] planification urbaine
[Termes IGN] population urbaine
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] TurquieRésumé : (auteur) Population density is important spatial information for addressing the use and access to land resources in cities under the Sustainable Development Goals. This is because the spatial data support appropriate spatial policies at the spatial scale and predicts how much land will be consumed in the future. The study aims to compare and evaluate the regression tools in the context of estimating the population density difference. The three analysis tools used are Random Forest-Based Classification, Multiple Linear Regression, and Geographically Weighted Regression. The sampling area covers cities around Türkiye. Comparative results showed that the two most important descriptive variables in the Random Forest-Based Classification model are the density difference of the new developed area and the connectivity. The three main explanatory variables of the Multiple Linear Regression model are centrality, vehicle ownership, and accessibility. The results of the Multiple Linear Regression model (a non-spatial model) and the Geographically Weighted Regression model (a spatial model), were found to be quite similar. The importance of accessibility and connectivity is more evident in the Multiple Linear Regression model when the Random Forest-Based Classification model highlights the density values in the new development areas. Numéro de notice : A2023-055 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2152494 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2152494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102388
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2152494[article]Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis Type de document : Article/Communication Auteurs : Haifa Tamiminia, Auteur ; Bahram Salehi, Auteur ; Masoud Mahdianpari, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse aérienne
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification pixellaire
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] réserve naturelleRésumé : (auteur) Forest above-ground biomass (AGB) estimation provides valuable information about the carbon cycle. Thus, the overall goal of this paper is to present an approach to enhance the accuracy of the AGB estimation. The main objectives are to: 1) investigate the performance of remote sensing data sources, including airborne light detection and ranging (LiDAR), optical, SAR, and their combination to improve the AGB predictions, 2) examine the capability of tree-based machine learning models, and 3) compare the performance of pixel-based and object-based image analysis (OBIA). To investigate the performance of machine learning models, multiple tree-based algorithms were fitted to predictors derived from airborne LiDAR data, Landsat, Sentinel-2, Sentinel-1, and PALSAR-2/PALSAR SAR data collected within New York’s Adirondack Park. Combining remote sensing data from multiple sources improved the model accuracy (RMSE: 52.14 Mg ha−1 and R2: 0.49). There was no significant difference among gradient boosting machine (GBM), random forest (RF), and extreme gradient boosting (XGBoost) models. In addition, pixel-based and object-based models were compared using the airborne LiDAR-derived AGB raster as a training/testing sample. The OBIA provided the best results with the RMSE of 33.77 Mg ha−1 and R2 of 0.81 for the combination of optical and SAR data in the GBM model. Numéro de notice : A2022-331 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2071475 Date de publication en ligne : 27/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2071475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100607
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Improvement of 3D LiDAR point cloud classification of urban road environment based on random forest classifier / Mahmoud Mohamed in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Improvement of 3D LiDAR point cloud classification of urban road environment based on random forest classifier Type de document : Article/Communication Auteurs : Mahmoud Mohamed, Auteur ; Salem Morsy, Auteur ; Adel El-Shazly, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] zone urbaineMots-clés libres : cylindrical neighbourhood = voisinage cylindrique Résumé : (auteur) 3D road mapping is essential for intelligent transportation system in smart cities. Road environment receives its data from mobile laser scanning (MLS) systems in the format of LiDAR point clouds, which are distinguished with their accuracy and high density. In this paper, a mobile LiDAR data classification method based on machine learning (ML) is presented. First, data subsampling and slicing are applied, followed by cylindrical neighbourhood selection method to determine the neighbourhood of each point. Second, a new LiDAR-based point feature namely Zmodis introduced, and used along with existing fifteen geometric features as input for a ML algorithm. Finally, Random Forest classifier is applied to a part of (Paris-Lille-3D) MLS point clouds belonging to NPM3D Benchmark. The dataset is about 1.5 km long road in Lille, France with more than 98 million points. The use of Zmod improved the accuracy from 90.26% to 95.23% and achieved sufficient results for classes with low points' portion in the dataset. In addition, the Zmod is the third important feature in the classification process among the sixteen features with about 14.63%. Moreover, using the first six important features achieved almost the maximum overall accuracy with about 60% reduction in the processing time. Numéro de notice : A2022-622 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2102218 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2102218 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101357
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]A machine learning method for Arctic lakes detection in the permafrost areas of Siberia / Piotr Janiec in European journal of remote sensing, vol 56 n° 1 (2023)PermalinkMachine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)PermalinkTree species classification in a typical natural secondary forest using UAV-borne LiDAR and hyperspectral data / Ying Quan in GIScience and remote sensing, vol 60 n° 1 (2023)PermalinkUsing Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study / W.D.K.V. Nandasena in Geocarto international, vol 38 n° inconnu ([01/01/2023])PermalinkAutomatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery / Yuxin Wang in Science of the total environment, vol 853 (December 2022)PermalinkAbove ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy / Mauro Maesano in iForest, biogeosciences and forestry, vol 15 n° 6 (December 2022)PermalinkClimate envelope analyses suggests significant rearrangements in the distribution ranges of Central European tree species / Gàbor Illés in Annals of Forest Science, vol 79 n° 1 (2022)PermalinkComparison of methods for the automatic classification of forest habitat types in the Southern Alps : Application to ecological data from the French national forest inventory / Charlotte Labit in Biodiversity & Conservation, vol 31 n° 13-14 (December 2022)PermalinkFusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands / Katrin Krzepek in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol 90 n° 6 (December 2022)PermalinkIntegration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) / Vahid Nasiri in Arabian Journal of Geosciences, vol 15 n° 24 (December 2022)Permalink