Descripteur
Documents disponibles dans cette catégorie (202)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Transfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
[article]
Titre : Transfer learning from citizen science photographs enables plant species identification in UAV imagery Type de document : Article/Communication Auteurs : Salim Soltani, Auteur ; Hannes Feilhauer, Auteur ; Robbert Duker, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données naturalistes
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] espèce végétale
[Termes IGN] filtrage de la végétation
[Termes IGN] identification de plantes
[Termes IGN] image captée par drone
[Termes IGN] orthoimage couleur
[Termes IGN] science citoyenne
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Accurate information on the spatial distribution of plant species and communities is in high demand for various fields of application, such as nature conservation, forestry, and agriculture. A series of studies has shown that Convolutional Neural Networks (CNNs) accurately predict plant species and communities in high-resolution remote sensing data, in particular with data at the centimeter scale acquired with Unoccupied Aerial Vehicles (UAV). However, such tasks often require ample training data, which is commonly generated in the field via geocoded in-situ observations or labeling remote sensing data through visual interpretation. Both approaches are laborious and can present a critical bottleneck for CNN applications. An alternative source of training data is given by using knowledge on the appearance of plants in the form of plant photographs from citizen science projects such as the iNaturalist database. Such crowd-sourced plant photographs typically exhibit very different perspectives and great heterogeneity in various aspects, yet the sheer volume of data could reveal great potential for application to bird’s eye views from remote sensing platforms. Here, we explore the potential of transfer learning from such a crowd-sourced data treasure to the remote sensing context. Therefore, we investigate firstly, if we can use crowd-sourced plant photographs for CNN training and subsequent mapping of plant species in high-resolution remote sensing imagery. Secondly, we test if the predictive performance can be increased by a priori selecting photographs that share a more similar perspective to the remote sensing data. We used two case studies to test our proposed approach with multiple RGB orthoimages acquired from UAV with the target plant species Fallopia japonica and Portulacaria afra respectively. Our results demonstrate that CNN models trained with heterogeneous, crowd-sourced plant photographs can indeed predict the target species in UAV orthoimages with surprising accuracy. Filtering the crowd-sourced photographs used for training by acquisition properties increased the predictive performance. This study demonstrates that citizen science data can effectively anticipate a common bottleneck for vegetation assessments and provides an example on how we can effectively harness the ever-increasing availability of crowd-sourced and big data for remote sensing applications. Numéro de notice : A2022-488 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100016 Date de publication en ligne : 23/05/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100956
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022) . - n° 100016[article]Biais du survivant, un travers scientifique / Laurent Polidori in Géomètre, n° 2201 (avril 2022)
[article]
Titre : Biais du survivant, un travers scientifique Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2022 Article en page(s) : pp 23 - 23 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Information géographique
[Termes IGN] information scientifique et technique
[Termes IGN] recherche scientifiqueRésumé : (Auteur) En ne publiant que les succès, la littérature scientifique surestime le potentiel des instruments d’observation. C’est ce qu’on appelle le «biais du survivant », qui déforme la fiabilité des résultats obtenus. Numéro de notice : A2022-271 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/04/2022 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100391
in Géomètre > n° 2201 (avril 2022) . - pp 23 - 23[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2022041 RAB Revue Centre de documentation En réserve L003 Disponible Exploring scientific literature by textual and image content using DRIFT / Ximena Pocco in Computers and graphics, vol 103 (April 2022)
[article]
Titre : Exploring scientific literature by textual and image content using DRIFT Type de document : Article/Communication Auteurs : Ximena Pocco, Auteur ; Tiago da Silva, Auteur ; Jorge Poco, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse visuelle
[Termes IGN] bibliothèque numérique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corpus
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] recherche scientifique
[Termes IGN] similitude sémantiqueRésumé : (auteur) Digital libraries represent the most valuable resource for storing, querying, and retrieving scientific literature. Traditionally, the reader/analyst aims to compose a set of articles based on keywords, according to his/her preferences, and manually inspect the resulting list of documents. Except for the articles which share citations or common keywords, the results retrieved will be limited to those which fulfill a syntactic match. Besides, if instead of having an article as a reference, the user has an image, the process of finding and exploring articles with similar content becomes infeasible. This paper proposes a visual analytic methodology for exploring and analyzing scientific document collections that consider both textual and image content. The proposed technique relies on combining multiple Content-Based Image Retrieval (CBIR) components and multidimensional projection to map the documents to a visual space based on their similarity, thus enabling an interactive exploration. Moreover, we extend its analytical capabilities with visual resources to display complementary information on selected documents that uncover hidden patterns and semantic relations. We evidence the effectiveness of our methodology through three case studies and a user evaluation, which attest to its usefulness during the process of scientific collections exploration. Numéro de notice : A2022-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cag.2022.02.005 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.1016/j.cag.2022.02.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100332
in Computers and graphics > vol 103 (April 2022) . - pp 140 - 152[article]Mapping abundance distributions of allergenic tree species in urbanized landscapes: A nation-wide study for Belgium using forest inventory and citizen science data / Sébastien Dujardin in Landscape and Urban Planning, vol 218 (February 2022)
[article]
Titre : Mapping abundance distributions of allergenic tree species in urbanized landscapes: A nation-wide study for Belgium using forest inventory and citizen science data Type de document : Article/Communication Auteurs : Sébastien Dujardin, Auteur ; Michiel Stas, Auteur ; Camille Van Eupen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Alnus (genre)
[Termes IGN] Belgique
[Termes IGN] Betula (genre)
[Termes IGN] carte de la végétation
[Termes IGN] carte forestière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Corylus (genre)
[Termes IGN] distribution spatiale
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] milieu urbain
[Termes IGN] modèle mathématique
[Termes IGN] régression
[Termes IGN] santé
[Termes IGN] science citoyenne
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Mapping the distribution of allergenic plants in urbanized landscapes is of high importance to evaluate its impact on human health. However, data is not always available for the allergy-relevant species such as alder, birch, hazel, especially within cities where systematic inventories are often missing or not readily available. This research presents an approach to produce high-resolution abundance maps of allergenic tree species using existing forest inventories and opportunistic open-access citizen science data. Following a two-step approach, we first built species distribution models (SDMs) to predict species habitat suitability, using environmental characteristics as predictors. Second, we used statistical regressions to model the relationships between abundance, the habitat suitability predicted by the SDMs, and additional vegetation cover covariates. The combination of forest inventory data with citizen science data improves the accuracy of abundance distribution models of allergenic tree species. This produces a continuous, 1-hectare resolution map of alder, birch, and hazel showing spatial variations of abundance distributions both within the urban fabric and along the urban–rural gradient. Species abundance modelling can offer a better understanding of the existing and potential future allergy risk posed by green spaces and pave the way for a wide variety of applications at fine-scale, which is indispensable for evidence-based urban green space policy and planning in support of public health. Numéro de notice : A2022-248 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.1016/j.landurbplan.2021.104286 Date de publication en ligne : 31/10/2021 En ligne : https://doi.org/10.1016/j.landurbplan.2021.104286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100196
in Landscape and Urban Planning > vol 218 (February 2022) . - n° 104286[article]Replication and the search for the laws in the geographic sciences / Peter Kedron in Annals of GIS, vol 28 n° 1 (January 2022)
[article]
Titre : Replication and the search for the laws in the geographic sciences Type de document : Article/Communication Auteurs : Peter Kedron, Auteur ; Joseph Holler, Auteur Année de publication : 2022 Article en page(s) : pp 45 - 56 Note générale : bibliographe Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] autocorrélation spatiale
[Termes IGN] géographie
[Termes IGN] hétérogénéité spatiale
[Termes IGN] ligne de base
[Termes IGN] phénomène géographique
[Termes IGN] réplication
[Termes IGN] reproductibilité
[Termes IGN] varianceRésumé : (auteur) Replication is a means of assessing the credibility and generalizability of scientific results, whereby subsequent studies independently corroborate the findings of initial research. In the study of geographic phenomena, a distinct form of replicability is particularly important – whether a result obtained in one geographic context applies in another geographic context. However, the laws of geography suggest that it may be challenging to use replication to assess the credibility of findings across space and to identify new laws. Many geographic phenomena are spatially heterogeneous, which implies they exhibit uncontrolled variance across the surface of the earth and lack a characteristic mean. When a phenomenon is spatially heterogeneous, it may be difficult or impossible to establish baselines or rules for study-to-study comparisons. At the same time, geographic observations are typically spatially dependent, which makes it difficult to isolate the effects of interest for cross-study comparison. In this paper, we discuss how laws describing the spatial variation of phenomena may influence the use of replication in geographic research. Developing a set of shared principles for replication assessment based on fundamental laws of geography is a prerequisite for adapting replication standards to meet the needs of disciplinary subfields while maintaining a shared analytical foundation for convergent spatial research. Numéro de notice : A2022-188 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1080/19475683.2022.2027011 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1080/19475683.2022.2027011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99916
in Annals of GIS > vol 28 n° 1 (January 2022) . - pp 45 - 56[article]The use of volunteer geographic information for producing and maintaining authoritative land use and land cover data / Ana-Maria Olteanu-Raimond (2022)PermalinkLes journées de la Recherche IGN 2021 / Anonyme in Géomatique expert, n° 135 (septembre 2021)PermalinkPermalinkRole of maximum entropy and citizen science to study habitat suitability of jacobin cuckoo in different climate change scenarios / Priyinka Singh in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkDevelopment of German-Ukrainian cooperations for education and research in photogrammetry and laser scanning / Thomas Luhmann in Geo-spatial Information Science, vol 24 n° 1 (March 2021)PermalinkCrowdsourcing without data bias: Building a quality assurance system for air pollution symptom mapping / Marta Samulowska in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)PermalinkCorrecting misclassification errors in crowdsourced ecological data: A Bayesian perspective / Edgar Santos-Fernandez in Journal of the Royal Statistical Society: Series C Applied Statistics, vol 70 n° 1 (January 2021)PermalinkElevation models for reproducible evaluation of terrain representation / Patrick Kennelly in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)PermalinkGuide de bonnes pratiques sur la gestion des données de la recherche / Groupe de travail Atelier Données (France) (2021)PermalinkUne méthodologie et un outil d'évaluation du niveau de "FAIRness" pour les ressources sémantiques : le cas d'AgroPortal / Emna Amdouni (2021)Permalink