Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique générale > identification de plantes
identification de plantes
Commentaire :
Identification botanique, Identification des plantes. Identification. >> Plante -- Classification. Equiv. LCSH : Plants -- Identification. Domaine(s) : 570, 580. |
Documents disponibles dans cette catégorie (17)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Transfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
[article]
Titre : Transfer learning from citizen science photographs enables plant species identification in UAV imagery Type de document : Article/Communication Auteurs : Salim Soltani, Auteur ; Hannes Feilhauer, Auteur ; Robbert Duker, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données naturalistes
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] espèce végétale
[Termes IGN] filtrage de la végétation
[Termes IGN] identification de plantes
[Termes IGN] image captée par drone
[Termes IGN] orthoimage couleur
[Termes IGN] science citoyenne
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Accurate information on the spatial distribution of plant species and communities is in high demand for various fields of application, such as nature conservation, forestry, and agriculture. A series of studies has shown that Convolutional Neural Networks (CNNs) accurately predict plant species and communities in high-resolution remote sensing data, in particular with data at the centimeter scale acquired with Unoccupied Aerial Vehicles (UAV). However, such tasks often require ample training data, which is commonly generated in the field via geocoded in-situ observations or labeling remote sensing data through visual interpretation. Both approaches are laborious and can present a critical bottleneck for CNN applications. An alternative source of training data is given by using knowledge on the appearance of plants in the form of plant photographs from citizen science projects such as the iNaturalist database. Such crowd-sourced plant photographs typically exhibit very different perspectives and great heterogeneity in various aspects, yet the sheer volume of data could reveal great potential for application to bird’s eye views from remote sensing platforms. Here, we explore the potential of transfer learning from such a crowd-sourced data treasure to the remote sensing context. Therefore, we investigate firstly, if we can use crowd-sourced plant photographs for CNN training and subsequent mapping of plant species in high-resolution remote sensing imagery. Secondly, we test if the predictive performance can be increased by a priori selecting photographs that share a more similar perspective to the remote sensing data. We used two case studies to test our proposed approach with multiple RGB orthoimages acquired from UAV with the target plant species Fallopia japonica and Portulacaria afra respectively. Our results demonstrate that CNN models trained with heterogeneous, crowd-sourced plant photographs can indeed predict the target species in UAV orthoimages with surprising accuracy. Filtering the crowd-sourced photographs used for training by acquisition properties increased the predictive performance. This study demonstrates that citizen science data can effectively anticipate a common bottleneck for vegetation assessments and provides an example on how we can effectively harness the ever-increasing availability of crowd-sourced and big data for remote sensing applications. Numéro de notice : A2022-488 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100016 Date de publication en ligne : 23/05/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100956
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022) . - n° 100016[article]Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery / Camile Sothe in Geocarto international, vol 36 n° 19 ([01/11/2021])
[article]
Titre : Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery Type de document : Article/Communication Auteurs : Camile Sothe, Auteur ; Claudia Maria de Almeida, Auteur ; Marcos Benedito Schimalski, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2241 - 2259 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] Brésil
[Termes IGN] délimitation
[Termes IGN] forêt tropicale
[Termes IGN] houppier
[Termes IGN] identification de plantes
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] méthode heuristique
[Termes IGN] orthoimage
[Termes IGN] segmentation d'imageRésumé : (auteur) In the case of tree species delineation with very high spatial resolution (VHR) images, is desirable that each segment corresponds to one individual tree crown (ITC). However, in order to have a segmentation algorithm that generates segments matching to ITCs, its parameters ought to be properly tuned. Aiming to avoid time-consuming trial-and-error procedures associated with this task, some initiatives for the automatic search of segmentation parameters have been developed, such as metaheuristic methods. The objective of this work was to test the automatic tuning of segmentation parameters of three segmentation algorithms for the delineation of ITCs belonging to a native endangered species in a subtropical forest area, comparing this method with the traditional trial-and-error approach. Two datasets (WorldView-2 and an orthoimage) and three segmentation algorithms (multiresolution, mean-shift and graph-based) were tested. For the automatic approach, a hybrid metaheuristic method was applied to accomplish the automatic search of parameters for the segmentation algorithms, while for the trial-and-error, a visual assessment was conducted for each set of parameters tested. Four supervised metrics were used to assess the quality of the segmentation results for the optimization approach and for the final set of parameters chosen in the trial-and-error approach. Results showed that none of the algorithms, datasets or approaches differ too much. The evaluation metrics values were lower, indicating that the reference ITCs polygons matched with the segmentation results. Despite the similar results, the automatic tuning of segmentation parameters proved to be a feasible alternative to reduce the subjectivity and the human effort in the choice of segmentation parameters as compared to the trial-and error approach. Numéro de notice : A2021-765 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1690056 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1690056 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98810
in Geocarto international > vol 36 n° 19 [01/11/2021] . - pp 2241 - 2259[article]Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia / Peter Kitin in Annals of Forest Science, vol 78 n° 2 (June 2021)
[article]
Titre : Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia Type de document : Article/Communication Auteurs : Peter Kitin, Auteur ; Edgard Espinoza, Auteur ; Hans Beeckman, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : Article 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] abattage (sylviculture)
[Termes IGN] Afzelia (genre)
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] bois
[Termes IGN] espèce végétale
[Termes IGN] forêt tropicale
[Termes IGN] identification de plantes
[Termes IGN] signature spectrale
[Termes IGN] spectrométrie
[Termes IGN] taxinomie
[Termes IGN] temps réelRésumé : (Auteur) Distinct chemical fingerprints of the wood of Afzelia pachyloba and A. bipindensis demonstrated an effective method for identifying these two commercially important species. Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) allowed high-throughput examination of chemotypes with vast potential in taxonomic, ecological, and forensic research of wood.
Context : Afzelia is a genus of valuable tropical timber trees. Accurate identification of wood is required for the prevention of illicit timber trade as well as for certification purposes in the forest and wood products industry. For many years, particular interest has been focused on attempts to distinguish the wood of A. bipindensis Harms from A. pachyloba Harms due to substantial differences in the commercial values of these two species.
Aims : We investigated if wood chemical signatures and microscopy could identify the wood of A. bipindensis and A. pachyloba.
Methods : We used two approaches, namely metabolome profiling by direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) and wood microstructure by light microscopy and SEM. In all, we analyzed samples from 89 trees of A. bipindensis, and A. pachyloba.
Results : The two species could not be separated by the IAWA standard microscopic wood features. SEM analysis showed considerable variation in the morphology of vestured pits; however, this variation was not species-specific. In contrast, DART-TOFMS followed by unsupervised statistics (Discriminant Analysis of Principal Components) showed distinct metabolome signatures of the two species.
Conclusion : DART-TOFMS provides a rapid method for wood identification that can be easily applied to small heartwood samples. Time- and cost-effective classification of wood chemotypes by DART-TOFMS can have potential applications in various research questions in forestry, wood science, tree-ecophysiology, and forensics.Numéro de notice : A2021-327 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01024-1 Date de publication en ligne : 31/03/2021 En ligne : https://doi.org/10.1007/s13595-020-01024-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97488
in Annals of Forest Science > vol 78 n° 2 (June 2021) . - Article 31[article]Economic losses caused by tree species proportions and site type errors in forest management planning / Arto Haara in Silva fennica, vol 53 n° 2 (2019)
[article]
Titre : Economic losses caused by tree species proportions and site type errors in forest management planning Type de document : Article/Communication Auteurs : Arto Haara, Auteur ; Annika S. Kangas, Auteur ; Sakari Tuominen, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] coupe (sylviculture)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] erreur
[Termes IGN] Finlande
[Termes IGN] identification de plantes
[Termes IGN] image 3D
[Termes IGN] image aérienne
[Termes IGN] image spatiale
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier étranger (données)
[Vedettes matières IGN] Economie forestièreRésumé : (auteur) The aim of this study was to estimate economic losses, which are caused by forest inventory errors of tree species proportions and site types. Our study data consisted of ground truth data and four sets of erroneous tree species proportions. They reflect the accuracy of tree species proportions in four remote sensing data sets, namely 1) airborne laser scanning (ALS) with 2D aerial image, 2) 2D aerial image, 3) 3D and 2D aerial image data together and 4) satellite data. Furthermore, our study data consisted of one simulated site type data set. We used the erroneous tree species proportions to optimise the timing of forest harvests and compared that to the true optimum obtained with ground truth data. According to the results, the mean losses of Net Present Value (NPV) because of erroneous tree species proportions at an interest rate of 3% varied from 124.4 € ha–1 to 167.7 € ha–1. The smallest losses were observed using tree species proportions predicted using ALS data and largest using satellite data. In those stands, respectively, in which tree species proportion errors actually caused economic losses, they were 468 € ha–1 on average with tree species proportions based on ALS data. In turn, site type errors caused only small losses. Based on this study, accurate tree species identification seems to be very important with respect to operational forest inventory. Numéro de notice : A2019-378 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.14214/sf.10089 Date de publication en ligne : 17/06/2019 En ligne : https://doi.org/10.14214/sf.10089 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93444
in Silva fennica > vol 53 n° 2 (2019)[article]Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images / Fabien Hubert Wagner in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part B (November 2018)
[article]
Titre : Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images Type de document : Article/Communication Auteurs : Fabien Hubert Wagner, Auteur ; Matheus Pinheiro Ferreira, Auteur ; Alber Sanchez, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 362 - 377 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Brésil
[Termes IGN] détection de contours
[Termes IGN] forêt tropicale
[Termes IGN] houppier
[Termes IGN] identification de plantes
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] morphologie mathématique
[Termes IGN] segmentation d'imageRésumé : (auteur) Mapping tropical tree species at landscape scales to provide information for ecologists and forest managers is a new challenge for the remote sensing community. For this purpose, detection and delineation of individual tree crowns (ITCs) is a prerequisite. Here, we present a new method of automatic tree crown delineation based only on very high resolution images from WorldView-2 satellite and apply it to a region of the Atlantic rain forest with highly heterogeneous tropical canopy cover – the Santa Genebra forest reserve in Brazil. The method works in successive steps that involve pre-processing, selection of forested pixels, enhancement of borders, detection of pixels in the crown borders, correction of shade in large trees and, finally, segmentation of the tree crowns. Principally, the method uses four techniques: rolling ball algorithm and mathematical morphological operations to enhance the crown borders and ease the extraction of tree crowns; bimodal distribution parameters estimations to identify the shaded pixels in the gaps, borders, and crowns; and focal statistics for the analysis of neighbouring pixels. Crown detection is validated by comparing the delineated ITCs with a sample of ITCs delineated manually by visual interpretation. In addition, to test if the spectra of individual species are conserved in the automatic delineated crowns, we compare the accuracy of species prediction with automatic and manual delineated crowns with known species. We find that our method permits detection of up to 80% of ITCs. The seven species with over 10 crowns identified in the field were mapped with reasonable accuracy (30.5–96%) given that only WorldView-2 bands and texture features were used. Similar classification accuracies were obtained using both automatic and manual delineation, thereby confirming that species’ spectral responses are preserved in the automatic method and thus permitting the recognition of species at the landscape scale. Our method might support tropical forest applications, such as mapping species and canopy characteristics at the landscape scale. Numéro de notice : A2018-536 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.09.013 Date de publication en ligne : 08/10/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.09.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91541
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part B (November 2018) . - pp 362 - 377[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018123 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt L'Atelier botanique des Barres : une expérience d'herborisation participative dans l'est du département du Loiret / Richard Chevalier in Symbioses, bulletin des muséums d'histoire naturelle de la région Centre, n° 35 - 36 ([01/09/2018])PermalinkFlore d'Auvergne et Limousin : clé d'identification de la flore auvergnate et limousine / Pascal Duboc (2018)PermalinkPermalinkRobust hyperspectral vision-based classification for multi-season weed mapping / Y. Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 69 (April 2012)PermalinkRENECOFOR. Dix ans de suivi de la végétation forestière : aspects méthodologiques et évolution temporelle de la flore (1994/1995-2005) / Frédéric Archaux (2009)PermalinkRENECOFOR. Suivi de la composition floristique des placettes du réseau (1994/1995-2000) et élaboration d'un programme d'assurance qualité intensif / Sylvaine Camaret (2004)PermalinkFlore de France / Marcel Guinochet (1982)PermalinkLes quatre flores de la France, Corse comprise (générale, alpine, méditerranéenne, littorale) / Paul Fournier (1977)PermalinkFlore du Cameroun, les botanistes au Cameroun / R. Letouzey (1968)PermalinkFlore du Sénégal / J. Berhaut (1967)Permalink