IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 55 n° 1Paru le : 01/01/2017 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierFusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring / Yuanyuan Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : Fusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring Type de document : Article/Communication Auteurs : Yuanyuan Wang, Auteur ; Xiao Xiang Zhu, Auteur ; Bernhard Zeisl, Auteur ; Marc Pollefeys, Auteur Année de publication : 2017 Article en page(s) : pp 14 - 26 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] données 4D
[Termes IGN] fusion d'images
[Termes IGN] géométrie de l'image
[Termes IGN] image à résolution métrique
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] pont
[Termes IGN] semis de points
[Termes IGN] surveillance d'ouvrage
[Termes IGN] voie ferrée
[Termes IGN] zone urbaineRésumé : (Auteur) Using synthetic aperture radar (SAR) interferometry to monitor long-term millimeter-level deformation of urban infrastructures, such as individual buildings and bridges, is an emerging and important field in remote sensing. In the state-of-the-art methods, deformation parameters are retrieved and monitored on a pixel basis solely in the SAR image domain. However, the inevitable side-looking imaging geometry of SAR results in undesired occlusion and layover in urban area, rendering the current method less competent for a semantic-level monitoring of different urban infrastructures. This paper presents a framework of a semantic-level deformation monitoring by linking the precise deformation estimates of SAR interferometry and the semantic classification labels of optical images via a 3-D geometric fusion and semantic texturing. The proposed approach provides the first “SARptical” point cloud of an urban area, which is the SAR tomography point cloud textured with attributes from optical images. This opens a new perspective of InSAR deformation monitoring. Interesting examples on bridge and railway monitoring are demonstrated. Numéro de notice : A2017-018 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2554563 En ligne : https://doi.org/10.1109/TGRS.2016.2554563 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83949
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 14 - 26[article]Random-walker-based collaborative learning for hyperspectral image classification / Bin Sun in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : Random-walker-based collaborative learning for hyperspectral image classification Type de document : Article/Communication Auteurs : Bin Sun, Auteur ; Xudong Kang, Auteur ; Shutao Li, Auteur ; Jon Atli Benediktsson, Auteur Année de publication : 2017 Article en page(s) : pp 212 - 222 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification
[Termes IGN] image hyperspectraleRésumé : (Auteur) Active learning (AL) and semisupervised learning (SSL) are both promising solutions to hyperspectral image classification. Given a few initial labeled samples, this work combines AL and SSL in a novel manner, aiming to obtain more manually labeled and pseudolabeled samples and use them together with the initial labeled samples to improve the classification performance. First, based on a comparison of the segmentation and spectral-spatial classification results obtained by random walker (RW) and extended RW (ERW) algorithms, the unlabeled samples are separated into two different sets, i.e., low- and high-confidence unlabeled data sets. For the high-confidence unlabeled data, pseudolabeling is performed, which can ensure the correctness and informativeness of the pseudolabeled samples. For the low-confidence unlabeled data, AL is used to select samples. In this way, the samples which are more effective for improvement of classification performance can be labeled in only a few iterations. Finally, with the learned training set and the original hyperspectral image as inputs, the ERW classifier is used to obtain the final classification result. Experiments performed on three real hyperspectral data sets show that the proposed method can achieve competitive classification accuracy even with a very limited number of manually labeled samples. Numéro de notice : A2017-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2604290 En ligne : https://doi.org/10.1109/TGRS.2016.2604290 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83950
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 212 - 222[article]Computationally efficient hyperspectral data learning based on the doubly stochastic dirichlet process / Xing Sun in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : Computationally efficient hyperspectral data learning based on the doubly stochastic dirichlet process Type de document : Article/Communication Auteurs : Xing Sun, Auteur ; Nelson H. C. Yung, Auteur ; Edmund Y. Lam, Auteur ; Hayden K.-H. So, Auteur Année de publication : 2017 Article en page(s) : pp 363 - 374 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] modèle stochastique
[Termes IGN] problème de DirichletRésumé : (Auteur) The Dirichlet process (DP) prior is effective in modeling HSIs (HSI) and identifying land-cover classes. However, modeling a continuously varying intensity of these land covers elegantly and consistently is still a challenge. We propose a doubly stochastic DP (DSDP) as an efficient model of the global topic measurement space, which imposes a weaker assumption compared with the discrete Markov assumption, resulting in a lower computational cost than other DP-prior-based models. We also present a mixture model of DSDP, which is termed the marked sigmoidal Gaussian process (SGP) DSDP mixture model. It can be thinned from a DP mixture without massive auxiliary covariates, and the marked function prior makes the number of land-cover classes consistent, whereas the SGP function prior models the HSI land-cover variation globally. The consistency of the number of land covers is maintained for various HSIs with large-scale geographical areas. Experiments show that the model is robust and consistent on HSI identification with weak or even no supervision. Numéro de notice : A2017-020 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2606575 En ligne : https://doi.org/10.1109/TGRS.2016.2606575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83951
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 363 - 374[article]Hyperspectral image classification with canonical correlation forests / Junshi Xia in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : Hyperspectral image classification with canonical correlation forests Type de document : Article/Communication Auteurs : Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; Akira Iwasaki, Auteur Année de publication : 2017 Article en page(s) : pp 421 - 431 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse canonique
[Termes IGN] analyse en composantes indépendantes
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classificateur
[Termes IGN] classification
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image hyperspectrale
[Termes IGN] Rotation Forest classificationRésumé : (Auteur) Multiple classifier systems or ensemble learning is an effective tool for providing accurate classification results of hyperspectral remote sensing images. Two well-known ensemble learning classifiers for hyperspectral data are random forest (RF) and rotation forest (RoF). In this paper, we proposed to use a novel decision tree (DT) ensemble method, namely, canonical correlation forest (CCF). More specifically, several individual canonical correlation trees (CCTs) that are binary DTs, which use canonical correlation components for the hyperplane splitting, are used to construct the CCF. Additionally, we adopt the projection bootstrap technique in CCF, in which the full spectral bands are retained for split selection in the projected space. The techniques aforementioned allow the CCF to improve the accuracy of member classifiers and diversity within the ensemble. Furthermore, the CCF is extended to the spectral-spatial frameworks that incorporate Markov random fields, extended multiattribute profiles (EMAPs), and the ensemble of independent component analysis and rolling guidance filter (E-ICA-RGF). Experimental results on six hyperspectral data sets are used to indicate the comparative effectiveness of the proposed method, in terms of accuracy and computational complexity, compared with RF and RoF, and it turns out that CCF is a promising approach for hyperspectral image classification not only with spectral information but also in the spectral-spatial frameworks. Numéro de notice : A2017-021 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2607755 En ligne : https://doi.org/10.1109/TGRS.2016.2607755 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83953
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 421 - 431[article]The MODIS cloud optical and microphysical products : collection 6 updates and examples from Terra and Aqua / Steven Platnick in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : The MODIS cloud optical and microphysical products : collection 6 updates and examples from Terra and Aqua Type de document : Article/Communication Auteurs : Steven Platnick, Auteur ; Kerry G. Meyer, Auteur ; Michael D. King, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 502 - 525 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse infrapixellaire
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] nuageRésumé : (Auteur) The Moderate-Resolution Imaging Spectroradiometer (MODIS) level-2 (L2) cloud product (earth science data set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases-daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: 1) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach; 2) improvement in the skill of the shortwave-derived cloud thermodynamic phase; 3) separate cloud effective radius retrieval data sets for each spectral combination used in previous collections; 4) separate retrievals for partly cloudy pixels and those associated with cloud edges; 5) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space; and 6) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes can collectively result in significant changes relative to C5, though the magnitude depends on the data set and the pixel's retrieval location in the cloud parameter space. Example L2 granule and level-3 gridded data set differences between the two collections are shown. While the emphasis is on the suite of cloud optical property data sets, other MODIS cloud data sets are discussed when relevant. Numéro de notice : A2017-022 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2610522 En ligne : https://doi.org/10.1109/TGRS.2016.2610522 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83954
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 502 - 525[article]Learning-based spatial-temporal superresolution mapping of forest cover with MODIS images / Yihang Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : Learning-based spatial-temporal superresolution mapping of forest cover with MODIS images Type de document : Article/Communication Auteurs : Yihang Zhang, Auteur ; Peter M. Atkinson, Auteur ; Xiaodong Li, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 600 - 614 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme d'apprentissage
[Termes IGN] carte forestière
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] données spatiotemporelles
[Termes IGN] image à très haute résolution
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] surveillance forestièreRésumé : (Auteur) Forest mapping from satellite sensor imagery provides important information for the timely monitoring of forest growth and deforestation, bioenergy potential assessment, and modeling of carbon flux, among others. Due to the daily global revisit rate and wide swath width, MODerate-resolution Imaging Spectroradiometer (MODIS) images are used commonly for satellite-derived forest mapping at both regional and global scales. However, the spatial resolution of MODIS images is too coarse to observe fine spatial variation in forest cover. The last few decades have seen the production of several fine-spatial-resolution satellite-derived global forest cover maps, such as Hansen's global tree canopy cover map of 2000, which includes abundant spectral, temporal, and spatial prior information about forest cover at a fine spatial resolution. In this paper, a novel learning-based spatial-temporal superresolution mapping approach is proposed to integrate both current MODIS images and prior maps of Hansen's tree canopy cover, to map present forest cover with a fine spatial resolution. The novel approach is composed of three main stages: 1) automatic generation of 240-m forest proportion images from both 240- and 480-m MODIS images using a nonlinear learning-based spectral unmixing method; 2) downscaling the 240-m forest proportion images to 30 m to predict the class possibilities at the subpixel scale using a temporal-example learning-based downscaling method; and 3) final production of the fine-spatial-resolution forest map by solving a regularization-based optimization problem. The novel approach produced more accurate fine-spatial-resolution forest cover maps in terms of both visual and quantitative evaluation than traditional pixel-based classification and the latest subpixel based superresolution mapping methods. The results show the great efficiency and potential of the novel approach for producing fine-spatial-resolution forest maps from MODIS images. Numéro de notice : A2017-023 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2613140 En ligne : https://doi.org/10.1109/TGRS.2016.2613140 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83955
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 600 - 614[article]