Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > segmentation > régionalisation (segmentation)
régionalisation (segmentation) |
Documents disponibles dans cette catégorie (14)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity / Yuhao Kang in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
[article]
Titre : STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity Type de document : Article/Communication Auteurs : Yuhao Kang, Auteur ; Kunlin Wu, Auteur ; Song Gao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1518 - 1549 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse multivariée
[Termes IGN] champ aléatoire de Markov
[Termes IGN] distribution spatiale
[Termes IGN] matrice de covariance
[Termes IGN] matrice de Toeplitz
[Termes IGN] motif séquentiel
[Termes IGN] régionalisation (segmentation)Résumé : (auteur) Spatial clustering has been widely used for spatial data mining and knowledge discovery. An ideal multivariate spatial clustering should consider both spatial contiguity and aspatial attributes. Existing spatial clustering approaches may face challenges for discovering repeated geographic patterns with spatial contiguity maintained. In this paper, we propose a Spatial Toeplitz Inverse Covariance-Based Clustering (STICC) method that considers both attributes and spatial relationships of geographic objects for multivariate spatial clustering. A subregion is created for each geographic object serving as the basic unit when performing clustering. A Markov random field is then constructed to characterize the attribute dependencies of subregions. Using a spatial consistency strategy, nearby objects are encouraged to belong to the same cluster. To test the performance of the proposed STICC algorithm, we apply it in two use cases. The comparison results with several baseline methods show that the STICC outperforms others significantly in terms of adjusted rand index and macro-F1 score. Join count statistics is also calculated and shows that the spatial contiguity is well preserved by STICC. Such a spatial clustering method may benefit various applications in the fields of geography, remote sensing, transportation, and urban planning, etc. Numéro de notice : A2022-591 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2053980 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2053980 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101282
in International journal of geographical information science IJGIS > vol 36 n° 8 (August 2022) . - pp 1518 - 1549[article]Spatially–encouraged spectral clustering: a technique for blending map typologies and regionalization / Levi John Wolf in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : Spatially–encouraged spectral clustering: a technique for blending map typologies and regionalization Type de document : Article/Communication Auteurs : Levi John Wolf, Auteur Année de publication : 2021 Article en page(s) : pp 2356 - 2373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] exploration de données
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] optimisation spatiale
[Termes IGN] régionalisation (segmentation)Résumé : (auteur) Clustering is a central concern in geographic data science and reflects a large, active domain of research. In spatial clustering, it is often challenging to balance two kinds of ‘goodness of fit:’ clusters should have ‘feature’ homogeneity, in that they aim to represent one ‘type’ of observation, and also ‘geographic’ coherence, in that they aim to represent some detected geographical ‘place’. This divides ‘map typologization’ studies, common in geodemographics, from ‘regionalization’ studies, common in spatial optimization and statistics. Recent attempts to simultaneously typologize and regionalize data into clusters with both feature homogeneity and geographic coherence have faced conceptual and computational challenges. Fortunately, new work on spectral clustering can address both regionalization and typologization tasks within the same framework. This research develops a novel kernel combination method for use within spectral clustering that allows analysts to blend smoothly between feature homogeneity and geographic coherence. I explore the formal properties of two kernel combination methods and recommend multiplicative kernel combination with spectral clustering. Altogether, spatially encouraged spectral clustering is shown as a novel kernel combination clustering method that can address both regionalization and typologization tasks in order to reveal the geographies latent in spatially structured data. Numéro de notice : A2021-762 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1934475 Date de publication en ligne : 05/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1934475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98795
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2356 - 2373[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible Pattern-based identification and mapping of landscape types using multi-thematic data / Jakub Nowosad in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
[article]
Titre : Pattern-based identification and mapping of landscape types using multi-thematic data Type de document : Article/Communication Auteurs : Jakub Nowosad, Auteur ; Tomasz F. Stepinski, Auteur Année de publication : 2021 Article en page(s) : pp 1634 - 1649 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] gestion des ressources
[Termes IGN] gestion foncière
[Termes IGN] matrice de co-occurrence
[Termes IGN] modèle mathématique
[Termes IGN] modélisation spatiale
[Termes IGN] occupation du sol
[Termes IGN] paysage
[Termes IGN] régionalisation (segmentation)
[Termes IGN] regroupement de données
[Termes IGN] segmentation en régionsRésumé : (auteur) Categorical maps of landscape types (LTs) are useful abstractions that simplify spatial and thematic complexity of natural landscapes, thus facilitating land resources management. A local landscape arises from a fusion of patterns of natural themes (such as land cover, landforms, etc.), which makes an unsupervised identification and mapping of LTs difficult. This paper introduces the integrated co-occurrence matrix (INCOMA) – a signature for numerical representation of multi-thematic categorical patterns. INCOMA enables an unsupervised identification and mapping of LTs. The region is tessellated into a large number of local landscapes – patterns of themes over small square-shaped neighborhoods. With local landscapes represented by INCOMA signatures and with dissimilarities between local landscapes calculated using the Jensen-Shannon Divergence (JSD), LTs can be identified and mapped using standard clustering or segmentation techniques. Resultant LTs are typically heterogeneous with respect to categories of contributing themes reflecting the human perception of a landscape. LTs calculated by INCOMA are more faithful abstractions of actual landscapes than LTs obtained by the current method of choice – the map overlay. The concept of INCOMA is described, and its application is demonstrated by an unsupervised mapping of LT zones in Europe based on combined patterns of land cover and landforms. Numéro de notice : A2021-549 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1893324 Date de publication en ligne : 02/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1893324 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98064
in International journal of geographical information science IJGIS > vol 35 n° 8 (August 2021) . - pp 1634 - 1649[article]Regionalization of flood magnitudes using the ecological attributes of watersheds / Bahman Jabbarian Amiri in Geocarto international, vol 35 n° 9 ([01/07/2020])
[article]
Titre : Regionalization of flood magnitudes using the ecological attributes of watersheds Type de document : Article/Communication Auteurs : Bahman Jabbarian Amiri, Auteur ; Bahareh Baheri, Auteur ; Nicola Fohrer, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 917 - 933 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] bassin hydrographique
[Termes IGN] Caspienne, mer
[Termes IGN] crue
[Termes IGN] débit
[Termes IGN] estimation quantitative
[Termes IGN] humidité du sol
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] occupation du sol
[Termes IGN] prévention des risques
[Termes IGN] régionalisation (segmentation)
[Termes IGN] ressources en eau
[Termes IGN] utilisation du sol
[Termes IGN] zone inondableRésumé : (auteur) Estimating flood discharge at ungauged sites is a significant challenge facing water resources planners and engineers during the planning and design of hydraulic structures, managing flood prone zones, and operating artificial waterbodies. Developing more robust models to improve the reliability of flood discharge estimations is thus very useful. The role of ecological attributes including land use/land cover (LULC), hydrologic soil groups (HSG), and watershed physical characteristics (area, main stream length, average slope), and watershed shape coefficients (form, compactness, circularity, and elongation) in explaining the overall variation in flood magnitude in 39 watersheds, located in the southern basin of the Caspian Sea, was investigated. As the LULC and HSG were found to play a significant role in explaining total variation (40–89%) in flood magnitudes, their inclusion in the estimation of flood magnitudes can provide more reliable estimates of flood risk and magnitude. Numéro de notice : A2020-428 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552321 Date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552321 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95494
in Geocarto international > vol 35 n° 9 [01/07/2020] . - pp 917 - 933[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020091 RAB Revue Centre de documentation En réserve L003 Disponible Spatially constrained regionalization with multilayer perceptron / Michael Govorov in Transactions in GIS, Vol 23 n° 5 (October 2019)
[article]
Titre : Spatially constrained regionalization with multilayer perceptron Type de document : Article/Communication Auteurs : Michael Govorov, Auteur ; Giedre Beconyte, Auteur ; Gennady Gienko, Auteur ; Victor Putrenko, Auteur Année de publication : 2019 Article en page(s) : pp 1048 - 1077 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] classification dirigée
[Termes IGN] données géologiques
[Termes IGN] Perceptron multicouche
[Termes IGN] programmation par contraintes
[Termes IGN] régionalisation (segmentation)
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation par graphes d'adjacence de régions
[Termes IGN] Ukraine
[Termes IGN] uraniumRésumé : (auteur) In this article, multilayer perceptron (MLP) network models with spatial constraints are proposed for regionalization of geostatistical point data based on multivariate homogeneity measures. The study focuses on non stationarity and autocorrelation in spatial data. Supervised MLP machine learning algorithms with spatial constraints have been implemented and tested on a point dataset. MLP spatially weighted classification models and an MLP contiguity constrained classification model are developed to conduct spatially constrained regionalization. The proposed methods have been tested with an attribute‐rich point dataset of geological surveys in Ukraine. The experiments show that consideration of the spatial effects, such as the use of spatial attributes and their respective whitening, improve the output of regionalization. It is also shown that spatial sorting used to preserve spatial contiguity leads to improved regionalization performance. Numéro de notice : A2019-552 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12557 Date de publication en ligne : 09/07/2019 En ligne : https://doi.org/10.1111/tgis.12557 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94202
in Transactions in GIS > Vol 23 n° 5 (October 2019) . - pp 1048 - 1077[article]Spatial association between regionalizations using the information-theoretical V-measure / Jakub Nowosad in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)PermalinkSpatial optimization for regionalization problems with spatial interaction: a heuristic approach / Kamyoung Kim in International journal of geographical information science IJGIS, vol 30 n° 3-4 (March - April 2016)PermalinkRegionalization of youth and adolescent weight metrics for the continental United States using contiguity-constrained clustering and partitioning / Samuel Adu-Prah in Cartographica, vol 50 n° 2 (Summer 2015)PermalinkRegionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) / D. Guo in International journal of geographical information science IJGIS, vol 22 n° 6-7 (june 2008)PermalinkRaster-network regionalization for watershed data processing / T.L. Whiteaker in International journal of geographical information science IJGIS, vol 21 n° 3-4 (march - april 2007)PermalinkEfficient regionalization techniques for socio-economic geographical units using minimum spanning trees / Renato Martins Assuncao in International journal of geographical information science IJGIS, vol 20 n° 7 (august 2006)PermalinkQualité des modèles numériques de terrain pour l'hydrologie : application à la caractérisation du régime de crues des bassins versants / Julie Charleux-Demargne (2001)PermalinkUne architecture d'aide à la construction de croquis d'interprétation géographique / Mauro Gaio (1994)PermalinkRegular density network / L. Ratajski in Annuaire international de cartographie, n° 17 (1977)Permalink