IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 55 n° 3Paru le : 01/03/2017 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierRobust sparse hyperspectral unmixing with ℓ2,1 norm / Yong Ma in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Robust sparse hyperspectral unmixing with ℓ2,1 norm Type de document : Article/Communication Auteurs : Yong Ma, Auteur ; Chang Li, Auteur ; Xiaoguang Mei, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1227 - 1239 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] matrice creuse
[Termes IGN] méthode robuste
[Termes IGN] pondérationRésumé : (Auteur) Sparse unmixing (SU) of hyperspectral data have recently received particular attention for analyzing remote sensing images, which aims at finding the optimal subset of signatures to best model the mixed pixel in the scene. However, most SU methods are based on the commonly admitted linear mixing model, which ignores the possible nonlinear effects (i.e., nonlinearity), and the nonlinearity is merely treated as outlier. Besides, the traditional SU algorithms often adopt the ℓ2 norm loss function, which makes them sensitive to noises and outliers. In this paper, we propose a robust SU (RSU) method with ℓ2,1 norm loss function, which is robust for noises and outliers. Then, the RSU can be solved by the alternative direction method of multipliers. Finally, the experiments on both synthetic data sets and real hyperspectral images demonstrate that the proposed RSU is efficient for solving the hyperspectral SU problem compared with the state-of-the-art algorithms. Numéro de notice : A2017-150 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2616161 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2616161 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84681
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1227 - 1239[article]Adaptive linear spectral mixture analysis / Chein-I Chang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Adaptive linear spectral mixture analysis Type de document : Article/Communication Auteurs : Chein-I Chang, Auteur Année de publication : 2017 Article en page(s) : pp 1240 - 1253 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] image optique
[Termes IGN] signature spectraleRésumé : (Auteur) This paper presents a theory of adaptive linear spectral mixture analysis (ALSMA), which can implement LSMA using an adaptive linear mixing model (ALMM) that adjusts and varies with spectral signatures adaptively. In doing so, a recursive LSMA (RLSMA) is developed for ALSMA to allow LSMA to update spectral signature by spectral signature without reprocessing LSMA and also to fuse LSMA results obtained by ALMM using different sets of spectral signatures. To form ALMM, the concept of RLSMA-specified virtual dimensionality is further proposed for ALSMA, which not only can find spectral signatures recursively by RLSMA to adjust ALMM but also can automatically determine the number of spectral signatures via Neyman-Pearson detection theory. Numéro de notice : A2017-151 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2620494 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2620494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84683
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1240 - 1253[article]Image-based target detection and radial velocity estimation methods for multichannel SAR-GMTI / Kei Suwa in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Image-based target detection and radial velocity estimation methods for multichannel SAR-GMTI Type de document : Article/Communication Auteurs : Kei Suwa, Auteur ; Kazuhiko Yamamoto, Auteur ; Masayoshi Tsuchida, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1325 - 1338 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande Ku
[Termes IGN] détection de cible
[Termes IGN] estimation statistique
[Termes IGN] image radar moirée
[Termes IGN] objet mobile
[Termes IGN] vitesse radialeRésumé : (Auteur) In order to enhance the performance of spaceborne synthetic aperture radar-ground moving target indication (SAR-GMTI) systems, multichannel systems with large and preferably nonuniform baselines are required. In this paper, SAR-GMTI algorithms for multichannel SAR systems, which we call multichannel displaced phase center antenna (DPCA), multichannel along track interferometry (ATI), and multichannel DPCA-ATI, are presented. Multichannel DPCA is a deterministic algorithm for clutter and azimuth ambiguity suppression. It successfully suppresses not only uniform azimuth ambiguities but also nonuniform isolated ones, since it does not require uniform clutter covariance assumption as adaptive algorithms do. Multichannel ATI and multichannel DPCA-ATI are the algorithms for target radial velocity estimation. Both of them reduce the target radial velocity ambiguities, which arise with the long baseline systems, by exploiting the multiple receive channel signals. And multichannel DPCA-ATI further achieves robust performance to clutter influence by suppressing the clutter and the azimuth ambiguity in advance. The performances of the proposed algorithms are shown through airborne Ku-band three-channel SAR experiments. It is shown that the multichannel DPCA suppresses strong azimuth ambiguity up to more than 20 dB, and the accuracy of the radial velocity estimation of the multichannel DPCA-ATI is on the order of 0.1 m/s. Furthermore, statistical performance analysis is presented to discuss the potential performance on the spaceborne system. Numéro de notice : A2017-152 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2622712 En ligne : https://doi.org/10.1109/TGRS.2016.2622712 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84684
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1325 - 1338[article]Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data / Manali Pal in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data Type de document : Article/Communication Auteurs : Manali Pal, Auteur ; Rajib Maity, Auteur ; Mayank Suman, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1351 - 1362 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse en composantes principales
[Termes IGN] angle d'incidence
[Termes IGN] bande C
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] image Risat-1
[Termes IGN] modèle d'incertitude
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation
[Termes IGN] teneur en eau liquideRésumé : (Auteur) This paper attempts to probabilistically estimate the surface soil moisture content (SMC) by using the synthetic aperture radar data provided by radar imaging satellite1. The novelty of this paper lies in: 1) developing a combined index to understand the role of all the backscattering coefficients with different polarization and soil texture information in influencing the SMC; 2) using normalized incidence angles, which enables the model to be applicable for different incidence angles; and 3) determination of uncertainty range of the estimated SMC. The dimensionality problem, which is frequently observed in the multivariate analysis, is reduced in the development of the combined index by the use of supervised principal component analysis (SPCA). The SPCA also ensures the maximum attainable association between the developed combined index and surface SMC above wilting point (WP). The association between the combined index and the surface SMC above WP is modeled through joint probability distribution by using the Frank copula. The model is developed and validated with the field soil moisture values over 334 monitoring points within the study area. The outcomes obtained by applying the proposed model indicate an encouraging potential of the model to be applied for bareland and vegetated land ( Numéro de notice : A2017-153 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2623378 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2623378 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84686
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1351 - 1362[article]Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification / Lin He in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification Type de document : Article/Communication Auteurs : Lin He, Auteur ; Jun Li, Auteur ; Antonio J. Plaza, Auteur ; Yuanqing Li, Auteur Année de publication : 2017 Article en page(s) : pp 1381 - 1395 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification automatique
[Termes IGN] filtre de Gabor
[Termes IGN] filtre passe-bas
[Termes IGN] image hyperspectrale
[Termes IGN] performanceRésumé : (Auteur) Spectral-spatial classification of remotely sensed hyperspectral images has attracted a lot of attention in recent years. Although Gabor filtering has been used for feature extraction from hyperspectral images, its capacity to extract relevant information from both the spectral and the spatial domains of the image has not been fully explored yet. In this paper, we present a new discriminative low-rank Gabor filtering (DLRGF) method for spectral-spatial hyperspectral image classification. A main innovation of the proposed approach is that our implementation is accomplished by decomposing the standard 3-D spectral-spatial Gabor filter into eight subfilters, which correspond to different combinations of low-pass and bandpass single-rank filters. Then, we show that only one of the subfilters (i.e., the one that performs low-pass spatial filtering and bandpass spectral filtering) is actually appropriate to extract suitable features based on the characteristics of hyperspectral images. This allows us to perform spectral-spatial classification in a highly discriminative and computationally efficient way, by significantly decreasing the computational complexity (from cubic to linear order) compared with the 3-D spectral-spatial Gabor filter. In order to theoretically prove the discriminative ability of the selected subfilter, we derive an overall classification risk bound to evaluate the discriminating abilities of the features provided by the different subfilters. Our experimental results, conducted using different hyperspectral images, indicate that the proposed DLRGF method exhibits significant improvements in terms of classification accuracy and computational performance when compared with the 3-D spectral-spatial Gabor filter and other state-of-the-art spectral-spatial classification methods. Numéro de notice : A2017-154 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2623742 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2623742 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84689
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1381 - 1395[article]Modified residual method for the estimation of noise in hyperspectral images / Asad Mahmood in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Modified residual method for the estimation of noise in hyperspectral images Type de document : Article/Communication Auteurs : Asad Mahmood, Auteur ; Amandine Robin, Auteur ; Michael Sears, Auteur Année de publication : 2017 Article en page(s) : pp 1451 - 1460 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] bruit blanc
[Termes IGN] corrélation
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectrale
[Termes IGN] matrice de covariance
[Termes IGN] résiduRésumé : (Auteur) Many hyperspectral image processing algorithms (e.g., detection, classification, endmember extraction, and so on) are generally designed with the assumption of no spectral or spatial correlation in noise. However, previous studies have shown the presence of nonnegligible correlation between the noise samples in different spectral bands, especially between noises in adjacent bands, and that most of the well-known intrinsic dimension estimation algorithms give poor estimates in the presence of correlated noise. Thus, there is a need to tackle the specific case of spectrally correlated noise for noise estimation. We show, in this paper, that the commonly employed hyperspectral noise estimation algorithm based on regression residuals can be significantly affected by spectrally correlated noise and we suggest a modified approach that proves to be robust to noise correlation. Furthermore, the proposed method improves the noise variance estimates in comparison to the classic residual method even for the case of uncorrelated noise. Simulation results show that the estimation error is reduced at times by a factor of 5 when there is high spectral correlation in the noise. Our proposed per-pixel noise estimator requires an estimate of the noise covariance matrix, and for this, we also propose a method to estimate the noise covariance matrix. Simulation results demonstrate that the per-pixel noise estimates obtained via the use of estimated noise statistics are almost as good as those obtained via use of the true statistics. Numéro de notice : A2017-155 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2624505 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2624505 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84690
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1451 - 1460[article]New point matching algorithm using sparse representation of image patch feature for SAR image registration / Jianwei Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : New point matching algorithm using sparse representation of image patch feature for SAR image registration Type de document : Article/Communication Auteurs : Jianwei Fan, Auteur ; Yan Wu, Auteur ; Fan Wang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1498 - 1510 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] alignement
[Termes IGN] appariement de points
[Termes IGN] chatoiement
[Termes IGN] erreur de discrétisation
[Termes IGN] image radar moirée
[Termes IGN] reconstruction d'image
[Termes IGN] représentation parcimonieuseRésumé : (Auteur) Image registration is an important preprocessing step in many synthetic aperture radar (SAR) image applications. A key issue in image registration is to reliably establish the correspondences between the feature points extracted from the reference and sensed images. A new point matching algorithm is proposed in this paper to align two SAR images. In the proposed method, by considering image patches as the basic units, a novel local descriptor including the intensity and geometric information is assigned to each feature point, which is more robust to speckle noise. Furthermore, a correspondence establishment scheme is introduced based on the reconstruction errors between feature points calculated by the sparse representation (SR) technique, which is designed for achieving accurate matches. Based on the obtained SR coefficients, a coordinate correction procedure is further proposed for improving the localization accuracy of the obtained correspondences. Both simulated deformed and real SAR images are utilized to evaluate the performance. The experimental results indicate that the proposed method yields a better registration performance in terms of both accuracy and robustness. Numéro de notice : A2017-156 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2626373 En ligne : https://doi.org/10.1109/TGRS.2016.2626373 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84692
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1498 - 1510[article]Dictionary learning-based feature-level domain adaptation for cross-scene hyperspectral image classification / Minchao Ye in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Dictionary learning-based feature-level domain adaptation for cross-scene hyperspectral image classification Type de document : Article/Communication Auteurs : Minchao Ye, Auteur ; Yuntao Qian, Auteur ; Jun Zhou, Auteur ; Yuan Yan Tang, Auteur Année de publication : 2017 Article en page(s) : pp 1544 - 1562 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification dirigée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] occupation du sol
[Termes IGN] régression logistiqueRésumé : (Auteur) A big challenge of hyperspectral image (HSI) classification is the small size of labeled pixels for training classifier. In real remote sensing applications, we always face the situation that an HSI scene is not labeled at all, or is with very limited number of labeled pixels, but we have sufficient labeled pixels in another HSI scene with the similar land cover classes. In this paper, we try to classify an HSI scene containing no labeled sample or only a few labeled samples with the help of a similar HSI scene having a relative large size of labeled samples. The former scene is defined as the target scene, while the latter one is the source scene. We name this classification problem as cross-scene classification. The main challenge of cross-scene classification is spectral shift, i.e., even for the same class in different scenes, their spectral distributions maybe have significant deviation. As all or most training samples are drawn from the source scene, while the prediction is performed in the target scene, the difference in spectral distribution would greatly deteriorate the classification performance. To solve this problem, we propose a dictionary learning-based feature-level domain adaptation technique, which aligns the spectral distributions between source and target scenes by projecting their spectral features into a shared low-dimensional embedding space by multitask dictionary learning. The basis atoms in the learned dictionary represent the common spectral components, which span a cross-scene feature space to minimize the effect of spectral shift. After the HSIs of two scenes are transformed into the shared space, any traditional HSI classification approach can be used. In this paper, sparse logistic regression (SRL) is selected as the classifier. Especially, if there are a few labeled pixels in the target domain, multitask SRL is used to further promote the classification performance. The experimental results on synthetic and real HSIs show the advantages of the proposed method for cross-scene classification. Numéro de notice : A2017-157 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2627042 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2627042 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84694
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1544 - 1562[article]Extracting target spectrum for hyperspectral target detection : an adaptive weighted learning method using a self-completed background dictionary / Yubin Niu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Extracting target spectrum for hyperspectral target detection : an adaptive weighted learning method using a self-completed background dictionary Type de document : Article/Communication Auteurs : Yubin Niu, Auteur ; Bin Wang, Auteur Année de publication : 2017 Article en page(s) : pp 1604 - 1617 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification spectrale
[Termes IGN] détection de cible
[Termes IGN] image hyperspectraleRésumé : (Auteur) The accuracy of target spectra determines the performances of hyperspectral target detection (TD) algorithms. However, given the inherent spectral variability and subpixel problem in hyperspectral imagery (HSI), the target spectra obtained from a standard spectral library or pixels from images directly are in most cases different from those of the real target spectra, resulting in low detection accuracy. The problem caused by inaccurate prior target information led to recognition of a new hotspot on HSI. In this paper, an adaptive weighted learning method (AWLM) using a self-completed background dictionary (SCBD) is specifically developed to extract the accurate target spectrum for hyperspectral TD. AWLM is derived from the idea of dictionary learning algorithms, learning the specific target spectrum with target-proportion-related adaptive weights. A strategy to construct SCBD is proposed to guarantee the convergence of AWLM to the accurate target spectrum. Utilizing the extracted target spectrum with higher accuracy, conventional TD algorithms can also achieve satisfactory detection results. Experimental results on both simulated and real hyperspectral data demonstrate that the proposed method has an advantage in extracting accurate target spectrum, enabling better and more robust detection results using conventional detectors than state-of-the-art methods that also aim at the problem of inaccurate prior target information of HSI. Numéro de notice : A2017-158 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2628085 En ligne : https://doi.org/10.1109/TGRS.2016.2628085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84695
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1604 - 1617[article]Hyperspectral SAR / Matthew Ferrara in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Hyperspectral SAR Type de document : Article/Communication Auteurs : Matthew Ferrara, Auteur ; Andrew J. Homan, Auteur ; Margaret Cheney, Auteur Année de publication : 2017 Article en page(s) : pp 1682 - 1695 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] image hyperspectrale
[Termes IGN] image radar moirée
[Termes IGN] réflectivité
[Termes IGN] traitement du signalRésumé : (Auteur) Typical synthetic aperture radar imaging techniques neglect the dispersive nature of the so-called image “reflectivity” function over the bandwidth of the transmitted waveform. In this paper, we form an image of the complex scene reflectivity as it depends on (x, y, and frequency), or equivalently (x, y, and time delay), a technique we refer to as hyperspectral synthetic aperture radar (HSAR). Our approach is based on a signal model that allows arbitrary flight trajectories and arbitrary waveforms (including continuously transmitting signals such as noise waveforms), and incorporates the causal, dispersive nature of the scene reflectivity without resorting to resolution-degrading frequency-domain sub-banding as others have previously proposed. We describe the resulting joint time-space resolution of HSAR in terms of the imaging point spread function for a selection of geometries and waveform bandwidths, and provide numerical examples to illustrate the approach. Numéro de notice : A2017-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2629265 En ligne : http://doi.org/10.1109/TGRS.2016.2629265 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84697
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1682 - 1695[article]