Remote sensing . vol 8 n° 7Paru le : 01/07/2016 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierMapping and characterization of hydrological dynamics in coastal marsh using high temporal resolution Sentinel-1 images / Cécile Cazals in Remote sensing, vol 8 n° 7 (July 2016)
[article]
Titre : Mapping and characterization of hydrological dynamics in coastal marsh using high temporal resolution Sentinel-1 images Type de document : Article/Communication Auteurs : Cécile Cazals , Auteur ; Sébastien Rapinel, Auteur ; Pierre-Louis Frison , Auteur ; Anne Bonis, Auteur ; Grégoire Mercier, Auteur ; Clément Mallet , Auteur ; Samuel Corgne, Auteur ; Jean-Paul Rudant , Auteur Année de publication : 2016 Article en page(s) : pp 1 - 17 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse diachronique
[Termes IGN] classification
[Termes IGN] données hydrographiques
[Termes IGN] gestion de l'eau
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] inondation
[Termes IGN] marais poitevin
[Termes IGN] polarimétrie radar
[Termes IGN] seuillage d'imageRésumé : (Auteur) In Europe, water levels in wetlands are widely controlled by environmental managers and farmers. However, the influence of these management practices on hydrodynamics and biodiversity remains poorly understood. This study assesses advantages of using radar data from the recently launched Sentinel-1A satellite to monitor hydrological dynamics of the Poitevin marshland in western France. We analyze a time series of 14 radar images acquired in VV and HV polarizations from December 2014 to May 2015 with a 12-day time step. Both polarizations are used with a hysteresis thresholding algorithm which uses both spatial and temporal information to distinguish open water, flooded vegetation and non-flooded grassland. Classification results are compared to in situ piezometric measurements combined with a Digital Terrain Model derived from LiDAR data. Results reveal that open water is successfully detected, whereas flooded grasslands with emergent vegetation and fine-grained patterns are detected with moderate accuracy. Five hydrological regimes are derived from the flood duration and mapped. Analysis of time steps in the time series shows that decreased temporal repetitivity induces significant differences in estimates of flood duration. These results illustrate the great potential to monitor variations in seasonal floods with the high temporal frequency of Sentinel-1A acquisitions. Numéro de notice : A2016--108 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs8070570 Date de publication en ligne : 05/07/2016 En ligne : http://dx.doi.org/10.3390/rs8070570 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84725
in Remote sensing > vol 8 n° 7 (July 2016) . - pp 1 - 17[article]Documents numériques
en open access
A2016--108_Mapping_and_characterization.pdfAdobe Acrobat PDF