Descripteur
Documents disponibles dans cette catégorie (56)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Encoder-decoder structure with multiscale receptive field block for unsupervised depth estimation from monocular video / Songnan Chen in Remote sensing, Vol 14 n° 12 (June-2 2022)
[article]
Titre : Encoder-decoder structure with multiscale receptive field block for unsupervised depth estimation from monocular video Type de document : Article/Communication Auteurs : Songnan Chen, Auteur ; Junyu Han, Auteur ; Mengxia Tang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2906 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couple stéréoscopique
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image isolée
[Termes IGN] optimisation (mathématiques)
[Termes IGN] profondeur
[Termes IGN] séquence d'images
[Termes IGN] structure-from-motionRésumé : (auteur) Monocular depth estimation is a fundamental yet challenging task in computer vision as depth information will be lost when 3D scenes are mapped to 2D images. Although deep learning-based methods have led to considerable improvements for this task in a single image, most existing approaches still fail to overcome this limitation. Supervised learning methods model depth estimation as a regression problem and, as a result, require large amounts of ground truth depth data for training in actual scenarios. Unsupervised learning methods treat depth estimation as the synthesis of a new disparity map, which means that rectified stereo image pairs need to be used as the training dataset. Aiming to solve such problem, we present an encoder-decoder based framework, which infers depth maps from monocular video snippets in an unsupervised manner. First, we design an unsupervised learning scheme for the monocular depth estimation task based on the basic principles of structure from motion (SfM) and it only uses adjacent video clips rather than paired training data as supervision. Second, our method predicts two confidence masks to improve the robustness of the depth estimation model to avoid the occlusion problem. Finally, we leverage the largest scale and minimum depth loss instead of the multiscale and average loss to improve the accuracy of depth estimation. The experimental results on the benchmark KITTI dataset for depth estimation show that our method outperforms competing unsupervised methods. Numéro de notice : A2022-563 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14122906 En ligne : https://doi.org/10.3390/rs14122906 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101240
in Remote sensing > Vol 14 n° 12 (June-2 2022) . - n° 2906[article]Cooperative image orientation considering dynamic objects / P. Trusheim in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)
[article]
Titre : Cooperative image orientation considering dynamic objects Type de document : Article/Communication Auteurs : P. Trusheim, Auteur ; Max Mehltretter, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2022 Article en page(s) : pp 169 - 177 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] compensation par faisceaux
[Termes IGN] orientation d'image
[Termes IGN] point d'appui
[Termes IGN] points homologues
[Termes IGN] réseau neuronal artificiel
[Termes IGN] scène urbaine
[Termes IGN] séquence d'imagesRésumé : (auteur) In the context of image orientation, it is commonly assumed that the environment is completely static. This is why dynamic elements are typically filtered out using robust estimation procedures. Especially in urban areas, however, many such dynamic elements are present in the environment, which leads to a noticeable amount of errors that have to be detected via robust adjustment. This problem is even more evident in the case of cooperative image orientation using dynamic objects as ground control points (GCPs), because such dynamic objects carry the relevant information. One way to deal with this challenge is to detect these dynamic objects prior to the adjustment and to process the related image points separately. To do so, a novel methodology to distinguish dynamic and static image points in stereoscopic image sequences is introduced in this paper, using a neural network for the detection of potentially dynamic objects and additional checks via forward intersection. To investigate the effects of the consideration of dynamic points in the adjustment, an image sequence of an inner-city traffic scenario is used; image orientation, as well as the 3D coordinates of tie points, are calculated via a robust bundle adjustment. It is shown that compared to a solution without considering dynamic points, errors in the tie points are significantly reduced, while the median of the precision of all 3D coordinates of the tie points is improved. Numéro de notice : A2022-441 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.5194/isprs-annals-V-1-2022-169-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-1-2022-169-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100775
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-1-2022 (2022 edition) . - pp 169 - 177[article]
Titre : Event-driven feature detection and tracking for visual SLAM Type de document : Thèse/HDR Auteurs : Ignacio Alzugaray, Auteur Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2022 Note générale : bibliographie
thesis submitted to attain the degree of Doctor of Sciences of ETH ZurichLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] caméra d'événement
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image floue
[Termes IGN] reconnaissance de formes
[Termes IGN] séquence d'images
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Traditional frame-based cameras have become the de facto sensor of choice for a multitude of applications employing Computer Vision due to their compactness, low cost, ubiquity, and ability to provide information-rich exteroceptive measurements. Despite their dominance in the field, these sensors exhibit limitations in common, real-world scenarios where detrimental effects, such as motion blur during high-speed motion or over-/underexposure in scenes with poor illumination, are prevalent. Challenging the dominance of traditional cameras, the recent emergence of bioinspired event cameras has opened up exciting research possibilities for robust perception due to their high-speed sensing, High-Dynamic-Range capabilities, and low power consumption. Despite their promising characteristics, event cameras present numerous challenges due to their unique output: a sparse and asynchronous stream of events, only capturing incremental perceptual changes at individual pixels. This radically different sensing modality renders most of the traditional Computer Vision algorithms incompatible without substantial prior adaptation, as they are initially devised for processing sequences of images captured at fixed frame-rate. Consequently, the bulk of existing event-based algorithms in the literature have opted to discretize the event stream into batches and process them sequentially, effectively reverting to frame-like representations in an attempt to mimic the processing of image sequences from traditional sensors. Such event-batching algorithms have demonstrably outperformed other alternative frame-based algorithms in scenarios where the quality of conventional intensity images is severely compromised, unveiling the inherent potential of these new sensors and popularizing them. To date, however, many newly designed event-based algorithms still rely on a contrived discretization of the event stream for its processing, suggesting that the full potential of event cameras is yet to be harnessed by processing their output more naturally. This dissertation departs from the mere adaptation of traditional frame-based approaches and advocates instead for the development of new algorithms integrally designed for event cameras to fully exploit their advantageous characteristics. In particular, the focus of this thesis lies on describing a series of novel strategies and algorithms that operate in a purely event-driven fashion, \ie processing each event as soon as it gets generated without any intermediate buffering of events into arbitrary batches and thus avoiding any additional latency in their processing. Such event-driven processes present additional challenges compared to their simpler event-batching counterparts, which, in turn, can largely be attributed to the requirement to produce reliable results at event-rate, entailing significant practical implications for their deployment in real-world applications. The body of this thesis addresses the design of event-driven algorithms for efficient and asynchronous feature detection and tracking with event cameras, covering alongside crucial elements on pattern recognition and data association for this emerging sensing modality. In particular, a significant portion of this thesis is devoted to the study of visual corners for event cameras, leading to the design of innovative event-driven approaches for their detection and tracking as corner-events. Moreover, the presented research also investigates the use of generic patch-based features and their event-driven tracking for the efficient retrieval of high-quality feature tracks. All the developed algorithms in this thesis serve as crucial stepping stones towards a completely event-driven, feature-based Simultaneous Localization And Mapping (SLAM) pipeline. This dissertation extends upon established concepts from state-of-the-art, event-driven methods and further explores the limits of the event-driven paradigm in realistic monocular setups. While the presented approaches solely rely on event-data, the gained insights are seminal to future investigations targeting the combination of event-based vision with other, complementary sensing modalities. The research conducted here paves the way towards a new family of event-driven algorithms that operate efficiently, robustly, and in a scalable manner, envisioning a potential paradigm shift in event-based Computer Vision. Note de contenu : 1- Introduction
2- Contribution
3- Conclusion and outlookNuméro de notice : 28699 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences : ETH Zurich : 2022 DOI : sans En ligne : https://www.research-collection.ethz.ch/handle/20.500.11850/541700 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100470 Automatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
[article]
Titre : Automatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model Type de document : Article/Communication Auteurs : Ningning Zhu, Auteur ; Bisheng Yang, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 913 - 922 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] orientation relative
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] superposition de données
[Termes IGN] SURF (algorithme)Résumé : (Auteur) To register mobile mapping system (MMS) lidar points and panoramic-image sequences, a relative orientation model of panoramic images (PROM) is proposed. The PROM is suitable for cases in which attitude or orientation parameters are unknown in the panoramic-image sequence. First, feature points are extracted and matched from panoramic-image pairs using the SURF algorithm. Second, these matched feature points are used to solve the relative attitude parameters in the PROM. Then, combining the PROM with the absolute position and attitude parameters of the initial panoramic image, the MMS lidar points and panoramic-image sequence are registered. Finally, the registration accuracy of the PROM method is assessed using corresponding points manually selected from the MMS lidar points and panoramic-image sequence. The results show that three types of MMS data sources are registered accurately based on the proposed registration method. Our method transforms the registration of panoramic images and lidar points into image feature-point matching, which is suitable for diverse road scenes compared with existing methods. Numéro de notice : A2021-899 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00006R2 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.14358/PERS.21-00006R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99298
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 12 (December 2021) . - pp 913 - 922[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021121 SL Revue Centre de documentation Revues en salle Disponible Mathematically optimized trajectory for terrestrial close-range photogrammetric 3D reconstruction of forest stands / Karel Kuželka in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)
[article]
Titre : Mathematically optimized trajectory for terrestrial close-range photogrammetric 3D reconstruction of forest stands Type de document : Article/Communication Auteurs : Karel Kuželka, Auteur ; Peter Surový, Auteur Année de publication : 2021 Article en page(s) : pp 259 - 281 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie terrestre
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] optimisation (mathématiques)
[Termes IGN] peuplement forestier
[Termes IGN] problème du voyageur de commerce
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] structure-from-motion
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) Terrestrial close-range photogrammetry offers a low-cost method of three-dimensional (3D) reconstruction of forest stands that provides automatically processable 3D data that can be used to evaluate inventory parameters of forest stands and individual trees. However, fundamental methodological problems in image acquisition and processing remain. This study enhances the methodology of photogrammetric Structure from Motion reconstruction of forest stands by determining the best photographer's trajectory for image acquisition. The study comprises 1) mathematical optimization of the route in a square grid using integer programming, 2) evaluation of point clouds derived from sequences of real photographs, simulating different trajectories, and 3) verification on real trajectories. In a forest research plot, we established a 1 m square grid of 625 (i.e., 25 × 25) photographic positions, and at each position, we captured 16 photographs in uniformly spaced directions. We adopted real tree positions and diameters, and the coordinates of the photographic positions, including orientation angles of captured images, were recorded. We then formulated an integer programming optimization model to find the most efficient trajectory that provided coverage of all sides of all trees with sufficient counts of images. Subsequently, we used the 10,000 captured images to produce image subsets simulating image sequences acquired during the photographer's movement along 84 different systematic trajectories of seven patterns based on either parallel lines or concentric orbits. 3D point clouds derived from the simulated image sequences were evaluated for their suitability for automatic tree detection and estimation of diameters at breast height. The results of the integer programming model indicated that the optimal trajectory consisted of parallel line segments if the camera is pointed forward – in the travel direction, or concentric orbits if the camera is pointed to a side – perpendicular to the travel direction. With point clouds derived from the images of the simulated trajectories, the best diameter estimates on automatically detected trees were achieved with trajectories consisting of parallel lines in two perpendicular directions where each line was passed in both opposite directions. For efficient image acquisition, resulting in point clouds of reasonable quality with low counts of images, a trajectory consisting of concentric orbits, including the plot perimeter with the camera pointed towards the plot center, proved to be the best. Results of simulated trajectories were verified with the photogrammetric reconstruction of the forest stand based on real trajectories for six patterns. The mathematical optimization was consistent with the results of the experiment, which indicated that mathematical optimization may represent a valid tool for planning trajectories for photogrammetric 3D reconstruction of scenes in general. Numéro de notice : A2021-562 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.06.013 Date de publication en ligne : 02/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.06.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98122
in ISPRS Journal of photogrammetry and remote sensing > vol 178 (August 2021) . - pp 259 - 281[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021081 SL Revue Centre de documentation Revues en salle Disponible 081-2021083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Remotely-sensed rip current dynamics and morphological control in high-energy beach environments / Isaac Rodriguez Padilla (2021)PermalinkConjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data / Bingquan Li in International journal of applied Earth observation and geoinformation, vol 90 (August 2020)PermalinkPhotogrammetric determination of 3D crack opening vectors from 3D displacement fields / Frank Liebold in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)PermalinkPré-localisation des données pour la modélisation 3D de tunnels : développements et évaluations / Christophe Heinkelé in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)PermalinkSemiautomatically register MMS LiDAR points and panoramic image sequence using road lamp and lane / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)PermalinkEnhanced 3D mapping with an RGB-D sensor via integration of depth measurements and image sequences / Bo Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 9 (September 2019)PermalinkLearning to segment moving objects / Pavel Tokmakov in International journal of computer vision, vol 127 n° 3 (March 2019)PermalinkUnsupervised detection of ruptures in spatial relationships in video sequences based on log‑likelihood ratio / Abdalbassir Abou-Elailah in Pattern Analysis and Applications, vol 21 n° 3 (August 2018)PermalinkReal-time accurate 3D head tracking and pose estimation with consumer RGB-D cameras / David Joseph Tan in International journal of computer vision, vol 126 n° 2-4 (April 2018)PermalinkVideo event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)Permalink