Descripteur
Documents disponibles dans cette catégorie (16)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Exploring scientific literature by textual and image content using DRIFT / Ximena Pocco in Computers and graphics, vol 103 (April 2022)
[article]
Titre : Exploring scientific literature by textual and image content using DRIFT Type de document : Article/Communication Auteurs : Ximena Pocco, Auteur ; Tiago da Silva, Auteur ; Jorge Poco, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse visuelle
[Termes IGN] bibliothèque numérique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corpus
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] recherche scientifique
[Termes IGN] similitude sémantiqueRésumé : (auteur) Digital libraries represent the most valuable resource for storing, querying, and retrieving scientific literature. Traditionally, the reader/analyst aims to compose a set of articles based on keywords, according to his/her preferences, and manually inspect the resulting list of documents. Except for the articles which share citations or common keywords, the results retrieved will be limited to those which fulfill a syntactic match. Besides, if instead of having an article as a reference, the user has an image, the process of finding and exploring articles with similar content becomes infeasible. This paper proposes a visual analytic methodology for exploring and analyzing scientific document collections that consider both textual and image content. The proposed technique relies on combining multiple Content-Based Image Retrieval (CBIR) components and multidimensional projection to map the documents to a visual space based on their similarity, thus enabling an interactive exploration. Moreover, we extend its analytical capabilities with visual resources to display complementary information on selected documents that uncover hidden patterns and semantic relations. We evidence the effectiveness of our methodology through three case studies and a user evaluation, which attest to its usefulness during the process of scientific collections exploration. Numéro de notice : A2022-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cag.2022.02.005 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.1016/j.cag.2022.02.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100332
in Computers and graphics > vol 103 (April 2022) . - pp 140 - 152[article]Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
[article]
Titre : Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations Type de document : Article/Communication Auteurs : Ruozhen Cheng, Auteur ; Jiaxin Liao, Auteur ; Jing Chen, Auteur Année de publication : 2022 Article en page(s) : pp 129 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] information sémantique
[Termes IGN] modèle d'ontologie
[Termes IGN] point d'intérêt
[Termes IGN] raisonnement spatial
[Termes IGN] relation spatiale
[Termes IGN] service fondé sur la position
[Termes IGN] similitude sémantiqueRésumé : (auteur) Locating points of interest (POIs) from descriptions can support intelligent location-based services. Available research achieves it through address matching and spatial reasoning. However, semantic characteristics and spatial proximities of address fields are usually neglected in address matching; current applications of spatial reasoning represent qualitative spatial relations in semantic networks for efficient queries, but they do not yet scale to large datasets for qualitative direction reasoning due to massive qualitative direction relations between objects; moreover, spatial reasoning on various quantitative distances should be optimized. This study proposes a method that improves the accuracy of address matching by combining multiple similarities and enables quick spatial reasoning through the faster relation retrieval of compact qualitative direction representations implemented on global equal latitude and longitude grids (ELLGs) and the ELLG-based quantitative calculations. The proposed method has been verified by two real-world datasets and proven to be efficient and accurate when locating POIs in large POI datasets from descriptions. Numéro de notice : A2022-177 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12838 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1111/tgis.12838 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99834
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 129 - 154[article]Investigating the quality of reverse geocoding services using text similarity techniques and logistic regression analysis / Batuhan Kilic in Cartography and Geographic Information Science, Vol 47 n° 4 (July 2020)
[article]
Titre : Investigating the quality of reverse geocoding services using text similarity techniques and logistic regression analysis Type de document : Article/Communication Auteurs : Batuhan Kilic, Auteur ; Fatih Gülgen, Auteur Année de publication : 2020 Article en page(s) : pp 336 - 349 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] exploration de texte
[Termes IGN] géocodage inverse
[Termes IGN] géocodage par adresse postale
[Termes IGN] logique binaire
[Termes IGN] qualité des données
[Termes IGN] régression
[Termes IGN] similitude sémantiqueRésumé : (auteur) Location, usually defined by postal address information or geographic coordinate values, is one of the leading themes in geography. Famous global mapping services such as ArcGIS Online, Bing Maps, Google Maps, or Yandex Maps can provide users with address information of any geographic coordinates using reverse geocoding. The accuracy of retrieved addresses is quite essential for a service user. Several researchers have evaluated the accuracy of the process based on the positional errors between the retrieved and actual addresses. This article proposes a different assessment based on text similarity algorithms. In this study, the authors examine the outcomes of 15 different text similarity algorithms by comparing them with the reference data. They benefit from the binary logistic regression to evaluate the results. At the end of the case study, they conclude that the soft-term frequency/inverse document frequency algorithm is the most appropriate to measure the quality of postal addresses of all tested services. The Jaccard algorithm also produces successful results only for Google and Bing Maps services. Moreover, the study allows the reader to assess the results of reverse geocoding derived from the global map platforms that serve in the test region. Numéro de notice : A2020-339 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1746198 Date de publication en ligne : 20/04/2020 En ligne : https://doi.org/10.1080/15230406.2020.1746198 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95214
in Cartography and Geographic Information Science > Vol 47 n° 4 (July 2020) . - pp 336 - 349[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020041 RAB Revue Centre de documentation En réserve L003 Disponible A deep learning architecture for semantic address matching / Yue Lin in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
[article]
Titre : A deep learning architecture for semantic address matching Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Mengjun Kang, Auteur ; Yuyang Wu, Auteur Année de publication : 2020 Article en page(s) : pp 559 - 576 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] géocodage par adresse postale
[Termes IGN] gestion urbaine
[Termes IGN] inférence sémantique
[Termes IGN] représentation vectorielle
[Termes IGN] réseau neuronal profond
[Termes IGN] Shenzhen
[Termes IGN] similitude sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) Address matching is a crucial step in geocoding, which plays an important role in urban planning and management. To date, the unprecedented development of location-based services has generated a large amount of unstructured address data. Traditional address matching methods mainly focus on the literal similarity of address records and are therefore not applicable to the unstructured address data. In this study, we introduce an address matching method based on deep learning to identify the semantic similarity between address records. First, we train the word2vec model to transform the address records into their corresponding vector representations. Next, we apply the enhanced sequential inference model (ESIM), a deep text-matching model, to make local and global inferences to determine if two addresses match. To evaluate the accuracy of the proposed method, we fine-tune the model with real-world address data from the Shenzhen Address Database and compare the outputs with those of several popular address matching methods. The results indicate that the proposed method achieves a higher matching accuracy for unstructured address records, with its precision, recall, and F1 score (i.e., the harmonic mean of precision and recall) reaching 0.97 on the test set. Numéro de notice : A2020-106 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1681431 Date de publication en ligne : 24/10/2019 En ligne : https://doi.org/10.1080/13658816.2019.1681431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94702
in International journal of geographical information science IJGIS > vol 34 n° 3 (March 2020) . - pp 559 - 576[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020031 RAB Revue Centre de documentation En réserve L003 Disponible Semantic relatedness algorithm for keyword sets of geographic metadata / Zugang Chen in Cartography and Geographic Information Science, vol 47 n° 2 (February 2020)
[article]
Titre : Semantic relatedness algorithm for keyword sets of geographic metadata Type de document : Article/Communication Auteurs : Zugang Chen, Auteur ; Yaping Yang, Auteur Année de publication : 2020 Article en page(s) : pp 125 - 140 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] descripteur
[Termes IGN] Infrastructure de données
[Termes IGN] internet interactif
[Termes IGN] métadonnées géographiques
[Termes IGN] relation sémantique
[Termes IGN] similitude sémantique
[Termes IGN] système à base de connaissances
[Termes IGN] terminologie
[Termes IGN] thesaurusRésumé : (auteur) Advances in linked geospatial data, recommender systems, and geographic information retrieval have led to urgent necessity to assess the overall semantic relatedness between keyword sets of geographic metadata. In this study, a new model is proposed for computing the semantic relatedness between arbitrary two keyword sets of geographic metadata stored in current global spatial data infrastructures. In this model, the overall semantic relatedness is derived by pairing these keywords that are found to be most relevant to each other and averaging their relatedness. To find the most relevant keywords across two keyword sets precisely, the keywords in the keyword set of geographic metadata are divided into three kinds: the thesaurus elements, the WordNet elements, and the statistical elements. The thesaurus-lexical relatedness measure (TLRM), the extended thesaurus-lexical relatedness measure (ETLRM), and the Longest Common Substring method are proposed to compute the semantic relatedness between two thesaurus elements, two WordNet elements, a thesaurus element, and a WordNet element and two statistical elements, respectively. A human data set – the geographic-metadata’s keyword set relatedness dataset, which was used to evaluate the precision of the semantic relatedness measures of keyword sets of geographic metadata, was created. The proposed method was evaluated against the human-generated relatedness judgments and was compared with the Jaccard method and Vector Space Model. The results demonstrated that the proposed method achieved a high correlation with human judgments and outperformed the existing methods. Finally, the proposed method was applied to quantitatively linked geospatial data. Numéro de notice : A2020-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1647797 Date de publication en ligne : 20/09/2017 En ligne : https://doi.org/10.1080/15230406.2019.1647797 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94573
in Cartography and Geographic Information Science > vol 47 n° 2 (February 2020) . - pp 125 - 140[article]PermalinkToponym matching through deep neural networks / Rui Santos in International journal of geographical information science IJGIS, vol 32 n° 1-2 (January - February 2018)PermalinkClassifying natural-language spatial relation terms with random forest algorithm / Shihong Du in International journal of geographical information science IJGIS, vol 31 n° 3-4 (March-April 2017)PermalinkLinked Forests: Semantic similarity of geographical concepts “forest” / Otakar Cerba in Open geosciences, vol 8 n° 1 (January - July 2016)PermalinkMultidimensional Similarity Measuring for Semantic Trajectories / Andre Salvaro Furtado in Transactions in GIS, vol 20 n° 2 (April 2016)PermalinkA structural-lexical measure of semantic similarity for geo-knowledge graphs / Andrea Ballatore in ISPRS International journal of geo-information, vol 4 n°2 (June 2015)PermalinkAn evaluation of ontology matching in geo-service applications / L. Vaccari in Geoinformatica, vol 16 n° 1 (January 2012)PermalinkExtraction et Gestion des Connaissances, EGC 2008, 8es journées francophones, 29 janvier 2008, Sophia Antipolis, France / Marie-Aude Aufaure Portier (2008)PermalinkPermalinkComparing geospatial entity classes: an asymmetric and context-dependent similarity measure / M. Andrea Rodríguez in International journal of geographical information science IJGIS, vol 18 n° 3 (april - may 2004)Permalink