Descripteur
Termes IGN > télédétection > télédétection électromagnétique > indice de végétation > Soil Adjusted Vegetation Index
Soil Adjusted Vegetation Index |
Documents disponibles dans cette catégorie (9)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)
[article]
Titre : Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Eze O. Amadi, Auteur Année de publication : 2022 Article en page(s) : pp 29 - 38 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bande C
[Termes IGN] canopée
[Termes IGN] carte de la végétation
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] intégration de données
[Termes IGN] inventaire forestier local
[Termes IGN] Pinus (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] précision de la classification
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) The mapping of southern yellow pines (loblolly, shortleaf, and Virginia pines) is important to supporting forest inventory and the management of forest resources. The overall aim of this study was to examine the integration of Landsat Operational Land Imager (OLI ) optical data with Sentinel-1 microwave C-band satellite data and vegetation indices in mapping the canopy cover of southern yellow pines. Specifically, this study assessed the overall mapping accuracies of the canopy cover classification of southern yellow pines derived using four data-integration scenarios: Landsat OLI alone; Landsat OLI and Sentinel-1; Landsat OLI with vegetation indices derived from satellite data—normalized difference vegetation index, soil-adjusted vegetation index, modified soil-adjusted vegetation index, transformed soil-adjusted vegetation index, and infrared percentage vegetation index; and 4) Landsat OLI with Sentinel-1 and vegetation indices. The results showed that the integration of Landsat OLI reflectance bands with Sentinel-1 backscattering coefficients and vegetation indices yielded the best overall classification accuracy, about 77%, and standalone Landsat OLI the weakest accuracy, approximately 67%. The findings in this study demonstrate that the addition of backscattering coefficients from Sentinel-1 and vegetation indices positively contributed to the mapping of southern yellow pines. Numéro de notice : A2022-062 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00024R2 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.14358/PERS.21-00024R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99706
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 1 (January 2022) . - pp 29 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022011 SL Revue Centre de documentation Revues en salle Disponible Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data / Asadollah Mirasi in Geocarto international, vol 36 n° 12 ([01/07/2021])
[article]
Titre : Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data Type de document : Article/Communication Auteurs : Asadollah Mirasi, Auteur ; Asghar Mahmoudi, Auteur ; Hossein Navid, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1309-1304 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] blé (céréale)
[Termes IGN] données de terrain
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] rendement agricole
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) Normalized difference vegetation index (NDVI)-based models have been developed to derive wheat grain yields with multispectral images. In this regard, field measurements and Landsat 8 Operational Land Imager (OLI) data were used for two growing seasons to determine the relationships between NDVI and yields. The number of six statistic parameters were calculated from NDVI values to find the best agreement with actual yield data. A comparison of the results showed that sum-NDVI better matched field measurements. To compare the results of NDVI with other vegetation indices, we applied four other vegetation indices. Results indicated that estimation of wheat yields using sum-NDVI values was more accurate than estimation by sum of the four applied vegetation indices values. Also, the investigation of multi-temporal images showed that the critical time to estimate wheat yield using sum-NDVI values was the time that wheat grains were in the milky and maturity stages. Numéro de notice : A2021-377 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1641561 Date de publication en ligne : 16/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1641561 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97872
in Geocarto international > vol 36 n° 12 [01/07/2021] . - pp 1309-1304[article]The use of land cover indices for rapid surface urban heat island detection from multi-temporal Landsat imageries / Nagihan Aslan in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
[article]
Titre : The use of land cover indices for rapid surface urban heat island detection from multi-temporal Landsat imageries Type de document : Article/Communication Auteurs : Nagihan Aslan, Auteur ; Dilek Koc-San, Auteur Année de publication : 2021 Article en page(s) : n° 416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image proche infrarouge
[Termes IGN] Normalized Difference Built-up Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Normalized Difference Water Index
[Termes IGN] occupation du sol
[Termes IGN] Soil Adjusted Vegetation Index
[Termes IGN] température au sol
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (auteur) The aims of this study were to determine surface urban heat island (SUHI) effects and to analyze the land use/land cover (LULC) and land surface temperature (LST) changes for 11 time periods from the years 2002 to 2020 using Landsat time series images. Bursa, which is the fourth largest metropolitan city in Turkey, was selected as the study area, and Landsat multi-temporal images of the summer season were used. Firstly, the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), modified normalized difference water index (MNDWI) and index-based built-up index (IBI) were created using the bands of Landsat images, and LULC classes were determined by applying automatic thresholding. The LST values were calculated using thermal images and SUHI effects were determined. The results show that NDVI, SAVI, MNDWI and IBI indices can be used effectively for the determination of the urban, vegetation and water LULC classes for SUHI studies, with overall classification accuracies between 89.60% and 95.90% for the used images. According to the obtained results, generally the LST values increased for almost all land cover areas between the years 2002 and 2020. The SUHI magnitudes were computed by using two methods, and it was found that there was an important increase in the 18-year time period. Numéro de notice : A2021-516 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10060416 Date de publication en ligne : 16/06/2021 En ligne : https://doi.org/10.3390/ijgi10060416 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97936
in ISPRS International journal of geo-information > vol 10 n° 6 (June 2021) . - n° 416[article]Mapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series / Misganu Debella-Gilo in Remote sensing, Vol 13 n° 2 (January-2 2021)
[article]
Titre : Mapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series Type de document : Article/Communication Auteurs : Misganu Debella-Gilo, Auteur ; Arnt Kristian Gjertsen, Auteur Année de publication : 2021 Article en page(s) : n° 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] carte agricole
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image Sentinel-MSI
[Termes IGN] Norvège
[Termes IGN] série temporelle
[Termes IGN] Soil Adjusted Vegetation Index
[Termes IGN] surface cultivée
[Termes IGN] utilisation du sol
[Termes IGN] variation saisonnièreRésumé : (auteur) The size and location of agricultural fields that are in active use and the type of use during the growing season are among the vital information that is needed for the careful planning and forecasting of agricultural production at national and regional scales. In areas where such data are not readily available, an independent seasonal monitoring method is needed. Remote sensing is a widely used tool to map land use types, although there are some limitations that can partly be circumvented by using, among others, multiple observations, careful feature selection and appropriate analysis methods. Here, we used Sentinel-2 satellite image time series (SITS) over the land area of Norway to map three agricultural land use classes: cereal crops, fodder crops (grass) and unused areas. The Multilayer Perceptron (MLP) and two variants of the Convolutional Neural Network (CNN), are implemented on SITS data of four different temporal resolutions. These enabled us to compare twelve model-dataset combinations to identify the model-dataset combination that results in the most accurate predictions. The CNN is implemented in the spectral and temporal dimensions instead of the conventional spatial dimension. Rather than using existing deep learning architectures, an autotuning procedure is implemented so that the model hyperparameters are empirically optimized during the training. The results obtained on held-out test data show that up to 94% overall accuracy and 90% Cohen’s Kappa can be obtained when the 2D CNN is applied on the SITS data with a temporal resolution of 7 days. This is closely followed by the 1D CNN on the same dataset. However, the latter performs better than the former in predicting data outside the training set. It is further observed that cereal is predicted with the highest accuracy, followed by grass. Predicting the unused areas has been found to be difficult as there is no distinct surface condition that is common for all unused areas. Numéro de notice : A2021-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13020289 Date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/rs13020289 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97149
in Remote sensing > Vol 13 n° 2 (January-2 2021) . - n° 289[article]Detecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
[article]
Titre : Detecting abandoned farmland using harmonic analysis and machine learning Type de document : Article/Communication Auteurs : Heeyeun Yoon, Auteur ; Soyoun Kim, Auteur Année de publication : 2020 Article en page(s) : pp 201 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse harmonique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Corée du sud
[Termes IGN] gestion des ressources
[Termes IGN] inventaire
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Normalized Difference Water Index
[Termes IGN] phénologie
[Termes IGN] production agricole
[Termes IGN] Soil Adjusted Vegetation Index
[Termes IGN] surface cultivéeRésumé : (auteur) It is critical to inventory abandoned farmland soon after it is generated, to better manage agricultural resources and to prevent negative consequences that would otherwise follow. This study aims to distinguish abandoned farmlands from active croplands—rice paddy and agricultural fields—by discerning the phenological trajectories over a short-term period of three years (Jan. 2016 to Dec. 2018) in Gwanyang City in South Korea. For Support Vector Machine (SVM) classification, we fully utilized parameters derived from harmonic analyses of the three vegetation indices (VIs: NDVI, NDWI, and SAVI) extracted from Sentinel-2A imagery. The harmonic analyses proved that higher-order sinusoid components produced better fitting to explain the trajectory of the VIs—the maximum adjusted was 95.23%—and the multiple VIs diversified the attributes for the classifications. Consequently, the higher-order harmonic components and the additional VIs increased the accuracy when used in SVM classification. The best performing classification was achieved with a composite of harmonic terms derived from the three VIs, yielding overall accuracy of 90.72%, Kappa index of 0.858, and user’s accuracy for abandoned farmland of 93.40%. The proposed method here would greatly improve the process of detecting abandoned farmland, despite a relatively short observation period, and enable a rapid response to the occurrence of abandonment. Numéro de notice : A2020-356 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.021 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95243
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 201 - 212[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Feasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat / Radoslaw Gurdak in Geoinformation issues, Vol 10 n°1 (2018)PermalinkEstimating forest canopy cover in black locust (Robinia pseudoacacia L.) plantations on the loess plateau using random forest / Qingxia Zhao in Forests, vol 9 n° 10 (October 2018)PermalinkA genetic programming approach to estimate vegetation cover in the context of soil erosion assessment / C. Puente in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 4 (April 2011)PermalinkSPOT-4 Vegetation multi-temporal compositing for land cover change studies over tropical regions / João M.B. Carreiras in International Journal of Remote Sensing IJRS, vol 26 n° 7 (April 2005)Permalink