Descripteur
Documents disponibles dans cette catégorie (125)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models Type de document : Article/Communication Auteurs : Xikun Hu, Auteur ; Puzhao Zhang, Auteur ; Yifang Ban, Auteur Année de publication : 2023 Article en page(s) : pp 228 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dommage
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (auteur) Nowadays Earth observation satellites provide forest fire authorities and resource managers with spatial and comprehensive information for fire stabilization and recovery. Burn severity mapping is typically performed by classifying bi-temporal indices (e.g., dNBR, and RdNBR) using thresholds derived from parametric models incorporating field-based measurements. Analysts are currently expending considerable manual effort using prior knowledge and visual inspection to determine burn severity thresholds. In this study, we aim to employ highly automated approaches to provide spatially explicit damage level estimates. We first reorganize a large-scale Landsat-based bi-temporal burn severity assessment dataset (Landsat-BSA) by visual data cleaning based on annotated MTBS data (approximately 1000 major fire events in the United States). Then we apply state-of-the-art deep learning (DL) based methods to map burn severity based on the Landsat-BSA dataset. Experimental results emphasize that multi-class semantic segmentation algorithms can approximate the threshold-based techniques used extensively for burn severity classification. UNet-like models outperform other region-based CNN and Transformer-based models and achieve accurate pixel-wise classification results. Combined with the online hard example mining algorithm to reduce class imbalance issue, Attention UNet achieves the highest mIoU (0.78) and the highest Kappa coefficient close to 0.90. The bi-temporal inputs with ancillary spectral indices work much better than the uni-temporal multispectral inputs. The restructured dataset will be publicly available and create opportunities for further advances in remote sensing and wildfire communities. Numéro de notice : A2023-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.026 Date de publication en ligne : 11/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102498
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 228 - 240[article]Detection of growth change of young forest based on UAV RGB images at single-tree level / Xiaocheng Zhou in Forests, vol 14 n° 1 (January 2023)
[article]
Titre : Detection of growth change of young forest based on UAV RGB images at single-tree level Type de document : Article/Communication Auteurs : Xiaocheng Zhou, Auteur ; Hongyu Wang, Auteur ; Chongcheng Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 141 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Abies (genre)
[Termes IGN] âge du peuplement forestier
[Termes IGN] Chine
[Termes IGN] croissance des arbres
[Termes IGN] détection de changement
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] jeune arbre
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] surveillance forestièreRésumé : (auteur) With the rapid development of Unmanned Aerial Vehicle (UAV) technology, more and more UAVs have been used in forest survey. UAV (RGB) images are the most widely used UAV data source in forest resource management. However, there is some uncertainty as to the reliability of these data when monitoring height and growth changes of low-growing saplings in an afforestation plot via UAV RGB images. This study focuses on an artificial Chinese fir (Cunninghamia lancelota, named as Chinese Fir) young forest plot in Fujian, China. Divide-and-conquer (DAC) and the local maximum (LM) method for extracting seedling height are described in the paper, and the possibility of monitoring young forest growth based on low-cost UAV remote sensing images was explored. Two key algorithms were adopted and compared to extract the tree height and how it affects the young forest at single-tree level from multi-temporal UAV RGB images from 2019 to 2021. Compared to field survey data, the R2 of single saplings’ height extracted from digital orthophoto map (DOM) images of tree pits and original DSM information using a divide-and-conquer method reached 0.8577 in 2020 and 0.9968 in 2021, respectively. The RMSE reached 0.2141 in 2020 and 0.1609 in 2021. The R2 of tree height extracted from the canopy height model (CHM) via the LM method was 0.9462. The RMSE was 0.3354 in 2021. The results demonstrated that the survival rates of the young forest in the second year and the third year were 99.9% and 85.6%, respectively. This study shows that UAV RGB images can obtain the height of low sapling trees through a computer algorithm based on using 3D point cloud data derived from high-precision UAV images and can monitor the growth of individual trees combined with multi-stage UAV RGB images after afforestation. This research provides a fully automated method for evaluating the afforestation results provided by UAV RGB images. In the future, the universality of the method should be evaluated in more afforestation plots featuring different tree species and terrain. Numéro de notice : A2023-115 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f14010141 Date de publication en ligne : 10/01/2023 En ligne : https://doi.org/10.3390/f14010141 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102482
in Forests > vol 14 n° 1 (January 2023) . - n° 141[article]Offering the appetite for the monitoring of European forests a diversified diet / Jean-Daniel Bontemps in Annals of Forest Science, vol 79 n° 1 (2022)
[article]
Titre : Offering the appetite for the monitoring of European forests a diversified diet Type de document : Article/Communication Auteurs : Jean-Daniel Bontemps , Auteur ; Olivier Bouriaud , Auteur ; Cédric Vega , Auteur ; Laura Bouriaud , Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 19 Note générale : bibliographie
NB article d'opinionLangues : Anglais (eng) Descripteur : [Termes IGN] Europe (géographie politique)
[Termes IGN] intégration
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] politique publique
[Termes IGN] ressources forestières
[Termes IGN] santé des forêts
[Termes IGN] surveillance forestière
[Termes IGN] Union Européenne
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest monitoring in Europe is turning matter of renewed political concern, and a possible role for ICP Forests health monitoring has been suggested to meet this goal (Ann For Sci 78:94, 2021). Multipurpose national forest inventory (NFI) surveys yet offer a sampling effort by two orders of magnitude greater than ICP level 1, have accomplished substantial methodological and harmonization progresses in the recent years, and therefore form a decisive contributor to future European forest monitoring incentives. Possible paths for the future development of a pan-European, comprehensive and more accurate monitoring are designed that stress a crucial need to build on the assets of the existing forest monitoring programs and favor their cooperation, in order to limit the co-existence of distinct forest monitoring processes. Numéro de notice : A2022-320 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01139-7 Date de publication en ligne : 11/04/2022 En ligne : http://dx.doi.org/10.1186/s13595-022-01139-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100432
in Annals of Forest Science > vol 79 n° 1 (2022) . - n° 19[article]Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning / J.F. Roberts in Computers & geosciences, vol 167 (October 2022)
[article]
Titre : Pyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning Type de document : Article/Communication Auteurs : J.F. Roberts, Auteur ; R. Mwangi, Auteur ; F. Mukabi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] carte thématique
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] image Sentinel-MSI
[Termes IGN] informatique en nuage
[Termes IGN] Kenya
[Termes IGN] langage de programmation
[Termes IGN] observation de la Terre
[Termes IGN] Python (langage de programmation)
[Termes IGN] surveillance forestièreRésumé : (auteur) Monitoring forest cover change from Earth observation data streams in near-real-time presents a challenge for automated change detection by way of a continuously updated big dataset. Even though deforestation is a significant global problem, forest cover changes in pairs of subsequent images happen relatively infrequently. Detecting a change can require the download and processing of tens, hundreds or even thousands of images. In geoscientific applications of Earth observation, machine learning algorithms are increasingly used. Once trained, a machine learning model can be applied to new images automatically. This paper introduces the open-access Python 3 package Pyeo - “Python for Earth Observation”. Pyeo provides a set of portable, extensible and modular Python functions for the automation of machine learning applications from Earth observation data streams, including automated search and download functionality, pre-processing and atmospheric correction, re-projection, creation of thematic base layers and machine learning classification or regression. Pyeo enables users to train their own machine learning models and then apply the models to newly downloaded imagery over their area of interest. This paper describes in detail how Pyeo works, its requirements, benefits, and a description of the libraries used. An application to the automated forest cover change detection in a region in Kenya is given. Pyeo can be used on cloud computing architectures such as Amazon Web Services, Microsoft Azure and Google Colab to provide scalable applications and processing solutions for the geosciences. Numéro de notice : A2022-706 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105192 Date de publication en ligne : 09/07/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101575
in Computers & geosciences > vol 167 (October 2022) . - n° 105192[article]Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands / Niwen Li in Ecological indicators, vol 142 (September 2022)
[article]
Titre : Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands Type de document : Article/Communication Auteurs : Niwen Li, Auteur ; Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aiguille
[Termes IGN] analyse discriminante
[Termes IGN] image hyperspectrale
[Termes IGN] Pinus densiflora
[Termes IGN] Pinus koraiensis
[Termes IGN] santé des forêts
[Termes IGN] signature spectrale
[Termes IGN] surveillance forestièreMots-clés libres : competitive adaptive reweighted sampling = échantillonnage compétitif adaptatif pondéré Résumé : (auteur) Pine wilt disease (PWD) is a very destructive forest disease that causes the mortality of pine. The infected trees usually die within three months, and the disease spreads fast with the long-horned beetle as the medium if the infected trees are not removed from the forest in time. Therefore, detecting the infected trees at different infection stage, especially the early infection, is crucial for preventing PWD spread. This study aims to exhibit the spectral differences of the pine needles between healthy pines and infected pines at different infection stages and reveal the diagnostic spectral bands for classifying the different infected stage trees. We collected needle samples from healthy, early-, middle-, late-stage infected trees in a Japanese pine (Pinus densiflora) forest and a Korean pine (Pinus koraiensis) forest in northern China to explore the spectral and biochemical properties differences of these four classes, and selected the sensitive bands combining competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA). The selected bands were used for the four infection stages classification by linear discriminant analysis (LDA) algorithm. The results show that Chlorophyll a, chlorophyll b, carotenoids, and moisture content decreases with the aggravation of infection. The green (510–530 nm), red-edge (680–760 nm), and short-wave infrared (1400–1420 nm and 1925–1965 nm) bands are the sensitive bands, and the overall accuracy is 77 % and 78 % for the Japanese pine and Korean pine respectively when using these bands for classifying healthy, early-, middle-, late-stage infected trees. The results demonstrate that physiological parameters including Chlorophyll a, chlorophyll b, carotenoids, and moisture content can be used as the diagnostic parameters of PWD, and the selected sensitive spectral bands are feasible for detecting the stress symptoms of the Japanese pine and Korean pine. Numéro de notice : A2022-617 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ecolind.2022.109198 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.109198 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101374
in Ecological indicators > vol 142 (September 2022)[article]Les temps des forêts et de leur observation / Jean-Daniel Bontemps in Revue forestière française, vol 73 n° 5 (2021)PermalinkRecent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review / André Duarte in Forests, vol 13 n° 6 (June 2022)PermalinkDeep learning for the detection of early signs for forest damage based on satellite imagery / Dennis Wittich in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)PermalinkUnveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)PermalinkAn open science and open data approach for the statistically robust estimation of forest disturbance areas / Saverio Francini in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)PermalinkEuropean-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.) / Jan-Peter George in Scientific reports, vol 12 (2022)PermalinkLandsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest / Ran Meng in Remote sensing of environment, vol 269 (February 2022)PermalinkMonthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning / Feng Zhao in Remote sensing of environment, vol 269 (February 2022)PermalinkNational implementation of the forest Europe indicators for sustainable forest management / Stefanie Linser in Forests, vol 13 n° 2 (February 2022)PermalinkMonitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon / Le Bienfaiteur Sagang Takougoum (2022)Permalink