Descripteur
Documents disponibles dans cette catégorie (17)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)
[article]
Titre : MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction Type de document : Article/Communication Auteurs : Du Yin, Auteur ; Renhe Jiang, Auteur ; Jiewen Deng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 77 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] données multitemporelles
[Termes IGN] données spatiotemporelles
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] origine - destination
[Termes IGN] réseau neuronal de graphes
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transport public
[Termes IGN] utilisateurRésumé : (auteur) The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow’s daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods. Numéro de notice : A2023-113 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-022-00466-1 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1007/s10707-022-00466-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102478
in Geoinformatica > vol 27 n° 1 (January 2023) . - pp 77 - 105[article]A real-time algorithm for continuous navigation in intelligent transportation systems using LiDAR-Gyroscope-Odometer integration / Tarek Hassan in Journal of applied geodesy, vol 17 n° 1 (January 2023)
[article]
Titre : A real-time algorithm for continuous navigation in intelligent transportation systems using LiDAR-Gyroscope-Odometer integration Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] capteur à balayage
[Termes IGN] centrale inertielle
[Termes IGN] gyroscope
[Termes IGN] lidar mobile
[Termes IGN] odomètre
[Termes IGN] panne
[Termes IGN] positionnement par GNSS
[Termes IGN] système de transport intelligent
[Termes IGN] temps réel
[Termes IGN] véhicule automobile
[Termes IGN] zone urbaineRésumé : (auteur) Real-time positioning in suburban and urban environments has been a challenging task for many Intelligent Transportation Systems (ITS) applications. In these environments, positioning using Global Navigation Satellite Systems (GNSS) cannot provide continuous solutions due to the blockage of signals in harsh scenarios. Consequently, it is intrinsic to have an independent positioning system capable of providing accurate and reliable positional solutions over GNSS outages. This study exploits the integration of Light Detection and Ranging (LiDAR), gyroscope, and odometer sensors, and a novel real-time algorithm is proposed for this integration. Real field data, collected by a moving land vehicle, is used to test the presented algorithm. Three simulated GNSS outages are introduced in the trajectory such that each outage lasts for five minutes. The results show that using the proposed algorithm can achieve a promising navigation performance in urban environments. In addition, it is shown that the denser environments, that existed over the second and third outages, can provide better positioning accuracies as more features are extracted. The horizontal errors over the first outage, with less density of surroundings, reached 7.74 m (0.43%) error with a mean value of 3.15 m. Moreover, the horizontal errors in the denser environments over the second and third outages reached 4.97 m (0.28%) and 3.99 m (0.23%), with mean values of 2.25 m and 1.89 m, respectively. Numéro de notice : A2023-110 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jag-2022-0022 Date de publication en ligne : 28/11/2022 En ligne : https://doi.org/10.1515/jag-2022-0022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102469
in Journal of applied geodesy > vol 17 n° 1 (January 2023) . - pp 65 - 77[article]Detection of GNSS no-line of sight signals using LiDAR sensors for intelligent transportation systems / Tarek Hassan in Survey review, vol 54 n° 385 (July 2022)
[article]
Titre : Detection of GNSS no-line of sight signals using LiDAR sensors for intelligent transportation systems Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 301 - 309 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] détection du signal
[Termes IGN] données lidar
[Termes IGN] positionnement ponctuel précis
[Termes IGN] semis de points
[Termes IGN] signal GNSS
[Termes IGN] système de transport intelligent
[Termes IGN] traitement de données GNSSRésumé : (auteur) The reliability and robustness of positioning systems in urban and suburban environments are intrinsic. This is obvious following the continuous increase of Intelligent Transportation Systems (ITS) applications in such challenging environments. Global Navigation Satellite Systems (GNSS) represent the primary positioning technique used for navigation purposes in these applications, which can be satisfying in open-sky areas. However, GNSS cannot provide the same level of navigation performance in urban environments. One of the main reasons for this is the No-Line of Sight (NLOS) signals. In this study, the integration of GNSS and Light Detection and Ranging (LiDAR) sensors is exploited, and a new algorithm is proposed for the detection of NLOS signals. Real field data are used to test and validate the proposed strategy and algorithm. Phase-smoothed code observations are employed to evaluate the accuracy improvement after excluding the NLOS observations. The results show that the horizontal direction's positional accuracy can be improved significantly after applying the proposed algorithm. This improvement reaches 10.403 m with a mean value of 2.162 m (62.2% improvement) over all epochs with detected NLOS signals. After analysing this improvement in the Cross-Track (CT) and Along-Track (AT) directions, it is found that the accuracy improvement reaches 8.641 m with a mean value of 1.699 m in the CT direction and 6.879 m with a mean value of 1.303 m in the AT direction. Numéro de notice : A2022-535 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1937458 Date de publication en ligne : 10/06/2021 En ligne : https://doi.org/10.1080/00396265.2021.1937458 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101091
in Survey review > vol 54 n° 385 (July 2022) . - pp 301 - 309[article]Spatial-temporal attentive LSTM for vehicle-trajectory prediction / Rui Jiang in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
[article]
Titre : Spatial-temporal attentive LSTM for vehicle-trajectory prediction Type de document : Article/Communication Auteurs : Rui Jiang, Auteur ; Hongyun Xu, Auteur ; Gelian Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] données spatiotemporelles
[Termes IGN] navigation autonome
[Termes IGN] relation spatiale
[Termes IGN] système de transport intelligent
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] vision par ordinateurRésumé : (auteur) Vehicle-trajectory prediction is essential for intelligent traffic systems (ITS), as it can help autonomous vehicles to plan a safe and efficient path. However, it is still a challenging task because existing studies have mainly focused on the spatial interactions of adjacent vehicles regardless of the temporal dependencies. In this paper, we propose a spatial-temporal attentive LSTM encoder–decoder model (STAM-LSTM) to predict vehicle trajectories. Specifically, the spatial attention mechanism is used to capture the spatial relationships among neighboring vehicles and then obtain the global spatial feature. Meanwhile, the temporal attention mechanism is designed to distinguish the effects of different historical time steps on future trajectory prediction. In addition, the motion feature of vehicles is extracted to reveal the influence of dynamic information on vehicle-trajectory prediction, and is combined with the local and global spatial features to represent the integrated features of the target vehicle at each historical moment. The experiments were conducted on public highway trajectory datasets—US-101 and I-80 in NGSIM—and the results demonstrate that our model achieves state-of-the-art prediction performance. Numéro de notice : A2022-549 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11070354 Date de publication en ligne : 21/06/2022 En ligne : https://doi.org/10.3390/ijgi11070354 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101150
in ISPRS International journal of geo-information > vol 11 n° 7 (July 2022) . - n° 354[article]Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches / Li-Minn Ang in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)PermalinkExploring data fusion for multi-object detection for intelligent transportation systems using deep learning / Amira Mimouna (2022)PermalinkTowards synthetic sensing for smart cities : a machine/deep learning-based approach / Faraz Malik Awan (2022)PermalinkPermalinkPrediction of RTK positioning integrity for journey planning / Ahmed El-Mowafy in Journal of applied geodesy, vol 14 n° 4 (October 2020)PermalinkPermalinkAnalyse d’images par méthode de Deep Learning appliquée au contexte routier en conditions météorologiques dégradées / Khouloud Dahmane (2019)PermalinkTowards visual urban scene understanding for autonomous vehicle path tracking using GPS positioning data / Citlalli Gamez Serna (2019)PermalinkDeep learning based vehicular mobility models for intelligent transportation systems / Jian Zhang (2018)PermalinkUsability of an opportunistic interface concept for ad hoc ride-sharing / Michael Rigby in International journal of cartography, vol 2 n° 2 (December 2016)Permalink