Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géologie > pédologie > texture du sol
texture du sol |
Documents disponibles dans cette catégorie (14)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Exploring the influencing factors in identifying soil texture classes using multitemporal Landsat-8 and Sentinel-2 data / Yanan Zhou in Remote sensing, vol 14 n° 21 (November-1 2022)
[article]
Titre : Exploring the influencing factors in identifying soil texture classes using multitemporal Landsat-8 and Sentinel-2 data Type de document : Article/Communication Auteurs : Yanan Zhou, Auteur ; Wei Wu, Auteur ; Hongbin Liu, Auteur Année de publication : 2022 Article en page(s) : n° 5571 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] composition des sols
[Termes IGN] données multitemporelles
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] limon
[Termes IGN] qualité du sol
[Termes IGN] réflectance spectrale
[Termes IGN] texture du solRésumé : (auteur) Soil texture is a key soil property driving physical, chemical, biological, and hydrological processes in soils. The rapid development of remote sensing techniques shows great potential for mapping soil properties. This study highlights the effectiveness of multitemporal remote sensing data in identifying soil textural class by using retrieved vegetation properties as proxies of soil properties. The impacts of sensors, modeling resolutions, and modeling techniques on the accuracy of soil texture classification were explored. Multitemporal Landsat-8 and Sentinel-2 images were individually acquired at the same time periods. Three satellite-based experiments with different inputs, i.e., Landsat-8 data, Sentinel-2 data (excluding red-edge parameters), and Sentinel-2 data (including red-edge parameters) were conducted. Modeling was carried out at three spatial resolutions (10, 30, 60 m) using five machine-learning (ML) methods: random forest, support vector machine, gradient-boosting decision tree, categorical boosting, and super learner that combined the four former classifiers based on the stacking concept. In addition, a novel SHapley Addictive Explanation (SHAP) technique was introduced to explain the outputs of the ML model. The results showed that the sensors, modeling resolutions, and modeling techniques significantly affected the prediction accuracy. The models using Sentinel-2 data with red-edge parameters performed consistently best. The models usually gave better results at fine (10 m) and medium (30 m) modeling resolutions than at a coarse (60 m) resolution. The super learner provided higher accuracies than other modeling techniques and gave the highest values of overall accuracy (0.8429), kappa (0.7611), precision (0.8378), recall rate (0.8393), and F1-score (0.8398) at 30 m with Sentinel-2 data involving red-edge parameters. The SHAP technique quantified the contribution of each variable for different soil textural classes, revealing the critical roles of red-edge parameters in separating loamy soils. This study provides comprehensive insights into the effective modeling of soil properties on various scales using multitemporal optical images. Numéro de notice : A2022-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14215571 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.3390/rs14215571 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102104
in Remote sensing > vol 14 n° 21 (November-1 2022) . - n° 5571[article]Forest tree species classification based on Sentinel-2 images and auxiliary data / Haotian You in Forests, vol 13 n° 9 (september 2022)
[article]
Titre : Forest tree species classification based on Sentinel-2 images and auxiliary data Type de document : Article/Communication Auteurs : Haotian You, Auteur ; Yuanwei Huang, Auteur ; Zhigang Qin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dioxyde d'azote
[Termes IGN] distribution spatiale
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] précipitation
[Termes IGN] réflectance spectrale
[Termes IGN] température de l'air
[Termes IGN] texture du sol
[Termes IGN] topographie localeRésumé : (auteur) Most research on forest tree species classification based on optical image data uses information such as spectral reflectance, vegetation index, texture, and phenology data. However, owing to the limited spectral resolution of multispectral images and the high cost of hyperspectral data, there is room for improvement in the classification of tree species in large areas based on optical images. The combined application of multispectral images and other auxiliary data can provide a new method for improving tree species classification accuracy. Hence, Sentinel-2 images were used to extract spectral reflectance, spectral index, texture, and phenological information. Data for topography, precipitation, air temperature, ultraviolet aerosol index, NO2 concentration, and other variables were included as auxiliary data. Models for forest tree species classification were constructed through feature combination and feature optimization using the random forest (RF), gradient tree boost (GTB), support vector machine (SVM), and classification and regression tree (CART) algorithms. The classification results of 16 feature combinations with the 4 classification methods were compared, and the contributions of different features to the classification models of forest tree species were evaluated. Finally, the optimal classification model was selected to identify the spatial distribution of forest tree species in the study area. The model based on feature optimization gave the best results among the 16 feature combination models. The overall accuracy and kappa coefficient were increased by 18% and 0.21, respectively, compared with the spectral classification model, and by 17% and 0.20, respectively, compared with the spectral and spectral index classification model. By analyzing the feature optimization model, it was found that terrain, ultraviolet aerosol index, and phenological information ranked as the top three features in terms of importance. Although the importance of spectral reflectance and spectral index features was lower, the number of feature variables accounted for a large proportion of the total. The importance of commonly used texture features was limited, and these features were not present in the feature optimization model. The RF algorithm had the highest classification accuracy, with an overall accuracy of 82.69% and a kappa coefficient of 0.80, among the four classification algorithms. The results of GTB were close to those of RF, and the difference in overall classification accuracy was only 0.14%. However, the results of the SVM and CART algorithms were relatively weaker, with overall classification accuracies of about 70%. It can be concluded that the combined application of Sentinel-2 images and auxiliary data can improve forest tree species classification accuracy. The model based on feature optimization achieved the highest classification accuracy among the 16 feature combination models. The spectral reflectance and spectral index data extracted from optical images are useful for tree species classification, but the effect of texture features was very limited. Auxiliary data, such as topographic features, ultraviolet aerosol index, phenological features, NO2 concentration features, topographic diversity features, precipitation features, temperature features, and multi-scale topographic location index data, can effectively improve forest tree species classification accuracy. The RF algorithm had the highest accuracy, and it can be used for tree species classification space distribution identification. The combined application of Sentinel-2 images and auxiliary data can improve classification accuracy, but the highest accuracy of the model was only 82.69%, which leaves room for improvement. Thus, more effective auxiliary data and the vertical structural parameters extracted from satellite LiDAR can be combined with multispectral images to improve forest tree species classification accuracy in future research. Numéro de notice : A2022-754 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13091416 Date de publication en ligne : 02/09/2022 En ligne : https://doi.org/10.3390/f13091416 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101757
in Forests > vol 13 n° 9 (september 2022) . - n° 1416[article]Flood inundation mapping and hazard assessment of Baitarani River basin using hydrologic and hydraulic model / Gaurav Talukdar in Natural Hazards, vol 109 n° 1 (October 2021)
[article]
Titre : Flood inundation mapping and hazard assessment of Baitarani River basin using hydrologic and hydraulic model Type de document : Article/Communication Auteurs : Gaurav Talukdar, Auteur ; Janaki Ballav Swain, Auteur ; Kanhu Charan Patra, Auteur Année de publication : 2021 Article en page(s) : pp 389 - 403 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] cartographie automatique
[Termes IGN] cartographie des risques
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] littoral
[Termes IGN] modèle hydrographique
[Termes IGN] modèle numérique de surface
[Termes IGN] occupation du sol
[Termes IGN] précipitation
[Termes IGN] risque naturel
[Termes IGN] ruissellement
[Termes IGN] texture du solRésumé : (auteur) Frequent flood is a concern for most of the coastal regions of India. The importance of flood maps in governing strategies for flood risk management is of prime importance. Flood inundation maps are considered dependable output generated from simulation results from hydraulic models in evaluating flood risks. In the present work, a continuous hydrologic-hydraulic model has been implemented for mapping the flood, caused by the Baitarani River of Odisha, India. A rainfall time-series data were fed into the hydrologic model and the runoff generated from the model was given as an input into the hydraulic model. The study was performed using the HEC-HMS model and the FLO-2D model to map the extent of flooding in the area. Shuttle Radar Topographic Mission (SRTM) 90 m Digital Elevation Model (DEM) data, Land use/Land cover map (LULC), soil texture data of the basin area were used to compute the topographic and hydraulic parameters. Flood inundation was simulated using the FLO-2D model and based on the flow depth, hazard zones were specified using the MAPPER tool of the hydraulic model. Bhadrak District was found to be the most hazard-prone district affected by the flood of the Baitarani River. The result of the study exhibited the hydraulic model as a utile tool for generating inundation maps. An approach for assessing the risk of flooding and proper management could help in mitigating the flood. The automated procedure for mapping and the details of the study can be used for planning flood disaster preparedness in the worst affected area. Numéro de notice : A2021-751 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-021-04841-3 En ligne : https://doi.org/10.1007/s11069-021-04841-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98736
in Natural Hazards > vol 109 n° 1 (October 2021) . - pp 389 - 403[article]An integrated methodology for surface soil moisture estimating using remote sensing data approach / Rida Khellouk in Geocarto international, vol 36 n° 13 ([15/07/2021])
[article]
Titre : An integrated methodology for surface soil moisture estimating using remote sensing data approach Type de document : Article/Communication Auteurs : Rida Khellouk, Auteur ; Ahmed Barakat, Auteur ; Aafaf El Jazouli, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1443 - 1458 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] évapotranspiration
[Termes IGN] humidité du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Maroc
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] température au sol
[Termes IGN] texture du solRésumé : (auteur) The present study aimed to propose an operational approach for estimating surface soil moisture from Moderate Resolution Imaging Spectroradiometer (MODIS) data by considering diverse environmental variables such as Normalized Difference Vegetation Index (NDVI), land surface temperature (Ts), evapotranspiration, topographic parameters (elevation and aspect) and soil texture (clay, loam and silt). A soil moisture index (SMI) derived from NDVI-Ts space is combined to all other variables, based on stepwise multiple regression, to develop a new SSMC model. Performance of this model was assessed using field-measured data of SSM. Accuracy was performed by the k-fold cross validation method, it showed a R2 (coefficients of determination) of 0.70, RMSE of 1.58% and unRMSE of 0.5%. In addition, the results of the developed model were compared with another soil moisture model SMM proposed in the irrigated perimeter of Tadla (Morocco), and revealed that the established model provided effectiveness results in the study areas. Numéro de notice : A2021-554 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1655797 Date de publication en ligne : 12/12/2019 En ligne : https://doi.org/10.1080/10106049.2019.1655797 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98105
in Geocarto international > vol 36 n° 13 [15/07/2021] . - pp 1443 - 1458[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021131 RAB Revue Centre de documentation En réserve L003 Disponible A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 ([15/03/2021])
[article]
Titre : A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar Type de document : Article/Communication Auteurs : Shoba Periasamy, Auteur ; Divya Senthil, Auteur ; Ramakrishnan S Shanmugam, Auteur Année de publication : 2021 Article en page(s) : pp 581 - 598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Argile
[Termes IGN] bande C
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] constante diélectrique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] limon
[Termes IGN] polarisation croisée
[Termes IGN] rugosité du sol
[Termes IGN] sable
[Termes IGN] texture du solRésumé : (auteur) The present study investigates the potential of synthetic aperture radar in demonstrating the relative percentage of sand, silt and clay content in the soil. The contribution of vegetation and topography in the backscattering coefficient has been significantly reduced by employing the terrain correction model, dual polarized SAR vegetation index and water cloud model. The target parameters namely ‘Soil Roughness (hrms-soil)’ and ‘Dielectric Constant’ (ε′vv−soil ) has arrived from cross-polarization ratio and modified Dubois model. The extracted target parameters are sufficiently correlated with in situ sand (R2 = 0.81) and clay measurements (R2 = 0.78). The relative percentage of silt was mapped by the novel idea of performing the correlation analysis between hrms-soil and ε′vv−soil and thus represented the percentage of silt with reasonable accuracy (R2 = 0.77). From the soil triangle formed with three estimated target parameters, we found that the clay category has shared around 35% of the total area followed by sandy loam (23%). Numéro de notice : A2021-253 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618924 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618924 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97276
in Geocarto international > vol 36 n° 5 [15/03/2021] . - pp 581 - 598[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021051 RAB Revue Centre de documentation En réserve L003 Disponible Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January-1 2021)PermalinkMapping quality prediction for RTK/PPK-equipped micro-drones operating in complex natural environment / Emmanuel Clédat in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)PermalinkComparative study of different models for soil erosion and sediment yield in Pairi watershed, Chhattisgarh, India / Tarun Kumar in Geocarto international, vol 35 n° 11 ([01/08/2020])PermalinkModeling of inland flood vulnerability zones through remote sensing and GIS techniques in the highland region of Papua New Guinea / Porejane Harley in Applied geomatics, vol 10 n° 2 (June 2018)PermalinkRemote sensing from research to operation, RSS92, Proceedings of the 18th annual conference of the Remote Sensing Society, Dundee, 15th-17th September 1992 / A.P. Cracknell (1992)PermalinkEléments de pédologie / L. Guyot (1982)PermalinkMinéralogie, pétrographie / Charles Cazabat (1977)PermalinkLes sols de Grimari avec carte pédologique au 1:50 000 (République centrafricaine) / P. Quantin (1962)PermalinkPrécis de pédologie / P. Duchaufour (1960)Permalink