Détail de l'auteur
Auteur S. Fangbe |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slop map / G. Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 69 n° 8 (August 2003)
[article]
Titre : Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slop map Type de document : Article/Communication Auteurs : G. Wang, Auteur ; G. Gertner, Auteur ; S. Fangbe, Auteur ; A.B. Anderson, Auteur Année de publication : 2003 Article en page(s) : pp 889 - 898 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] érosion
[Termes IGN] estimation statistique
[Termes IGN] géostatistique
[Termes IGN] krigeage
[Termes IGN] modélisation
[Termes IGN] terrainRésumé : (Auteur) Soil erosion is widely predicted as a function of six input factors, including rainfall erosivity, soil erodibility, slope length, slope steepness, cover management, and support practice. Because of the multiple factors, their interactions, and their spatial and temporal variability, accurately mapping the factors and further soil loss is very difficult. This paper compares two geostatistical methods and a traditional stratification to map the factors and to estimate soil loss. Soil loss is estimated by integrating a sample ground data set, TM images, and a slope map. The geostatistical methods include collocated cokriging and a joint sequential cosimulation model. With both geostatistical methods, local estimates and variances at any location where the factors and soil loss are unknown can be computed. The results showed that the two geostatistical methods performed significantly better than traditional stratification in terms of overall and spatially explicit estimates. Furthermore, the cokriging led to higher accuracy of mean estimates than did the cosimulation, while the latter provided decision makers with reliable uncertainties of the local estimates as useful information to assess risk when making decisions based on the prediction maps. Numéro de notice : A2003-169 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.69.8.889 En ligne : https://doi.org/10.14358/PERS.69.8.889 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=22465
in Photogrammetric Engineering & Remote Sensing, PERS > vol 69 n° 8 (August 2003) . - pp 889 - 898[article]