Descripteur
Documents disponibles dans cette catégorie (33)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Measuring metro accessibility: An exploratory study of Wuhan based on multi-source urban data / Tao Wu in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
[article]
Titre : Measuring metro accessibility: An exploratory study of Wuhan based on multi-source urban data Type de document : Article/Communication Auteurs : Tao Wu, Auteur ; Mingjing Li, Auteur ; Ye Zhou, Auteur Année de publication : 2023 Article en page(s) : n° 18 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] analyse de groupement
[Termes IGN] classification par nuées dynamiques
[Termes IGN] données multisources
[Termes IGN] OpenStreetMap
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] transport public
[Termes IGN] utilisation du sol
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Metro accessibility has attracted interest in sustainable transport analyses. Hence, the accuracy of metro-accessibility measures have become increasingly vital. Various spatiotemporal factors, including by-metro accessibility, land-use accessibility and to-metro accessibility, affect metro accessibility; however, measuring metro accessibility while considering all these components simultaneously is challenging. By integrating these factors into a unified analysis framework, this study aims to strengthen the method for metro-accessibility assessment. Specifically, we proposed the “By metro–Land use–To metro” model to conduct a metro-accessibility index and develop an accessibility-based station typology. The results show that Wuhan metro system accessibility presented a “high-medium-low” spatial disparity from the urban center to the periphery. Meanwhile, the variety of metro-accessibility characteristics and typologies in Wuhan will equip urban planners and policymakers with a useful tool for better organising by-metro accessibility, land-use accessibility and to-metro accessibility. Numéro de notice : A2023-104 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi12010018 Date de publication en ligne : 10/01/2023 En ligne : https://doi.org/10.3390/ijgi12010018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102432
in ISPRS International journal of geo-information > vol 12 n° 1 (January 2023) . - n° 18[article]MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)
[article]
Titre : MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction Type de document : Article/Communication Auteurs : Du Yin, Auteur ; Renhe Jiang, Auteur ; Jiewen Deng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 77 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] données multitemporelles
[Termes IGN] données spatiotemporelles
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] origine - destination
[Termes IGN] réseau neuronal de graphes
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transport public
[Termes IGN] utilisateurRésumé : (auteur) The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow’s daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods. Numéro de notice : A2023-113 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-022-00466-1 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1007/s10707-022-00466-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102478
in Geoinformatica > vol 27 n° 1 (January 2023) . - pp 77 - 105[article]Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]A geospatial workflow for the assessment of public transit system performance using near real-time data / Anastassios Dardas in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : A geospatial workflow for the assessment of public transit system performance using near real-time data Type de document : Article/Communication Auteurs : Anastassios Dardas, Auteur ; Brent Hall, Auteur ; Jon Salter, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1642 - 1664 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] ArcGIS
[Termes IGN] Calgary
[Termes IGN] collecte de données
[Termes IGN] données spatiotemporelles
[Termes IGN] itinéraire
[Termes IGN] planification urbaine
[Termes IGN] Python (langage de programmation)
[Termes IGN] stockage de données
[Termes IGN] temps réel
[Termes IGN] trafic routier
[Termes IGN] transport public
[Termes IGN] WebSIGRésumé : (auteur) This article presents the development of a Geographical Information Systems (GIS) workflow that harvests high-volume and high-frequency near real-time data from a public General Transit Feed Specification (GTFS) and calculates metrics for the assessment of on-time and route speed performance for a public transit system. The approach is applied to near real-time and static GTFS data collected over a 9-month period for the City of Calgary, Alberta, Canada. The workflow uses two Azure Virtual Machines (VMs), one to harvest the data and the other to process observations in parallel using Python and the ArcGIS API libraries. A Web GIS application is described that queries data from MongoDB to visualize the performance results in spatiotemporal form. The purpose of the workflow and Web GIS application is to provide actionable information to transit planners to improve public transportation systems. The data management and analysis workflow is transferable to similar GTFS data from other cities. Numéro de notice : A2022-531 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : sans Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1111/tgis.12942 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101078
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1642 - 1664[article]Changing mobility patterns in the Netherlands during COVID-19 outbreak / Sander Van Der Drift in Journal of location-based services, vol 16 n° 1 (March 2022)
[article]
Titre : Changing mobility patterns in the Netherlands during COVID-19 outbreak Type de document : Article/Communication Auteurs : Sander Van Der Drift, Auteur ; Luc Wismans, Auteur ; Marie-José Olde-Kalter, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bicyclette
[Termes IGN] comportement
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] mobilité territoriale
[Termes IGN] Pays-Bas
[Termes IGN] téléphone intelligent
[Termes IGN] transport
[Termes IGN] transport public
[Termes IGN] travail à domicile
[Termes IGN] véhicule automobileRésumé : (auteur) The COVID-19 outbreak and associated measures taken had an enormous impact on society as well as a disruptive, but not necessarily negative, impact on mobility. The Ministry of Infrastructure and Water Management received the most recent insights from the Dutch Mobility Panel (DMP) on a weekly basis. These insights were used to monitor the travel behaviour and to analyse changes in the behaviour of different groups and usage of modes of transport during COVID-19. The analysis shows an enormous decrease in travel at the beginning of the implementation of the so-called ‘intelligent’ lockdown and gradual increase again towards comparable levels as before this ‘intelligent lockdown, although the distribution over time, motives and used modes has changed. It becomes clear that not everyone needs to travel during peak hours and commuter travel is also not the main reason for the increase in car usage. Furthermore, cycling has shown to be an alternative option for travellers and public transport is hardly used anymore. If it is possible to sustain the lower level of car usage and integrate public transport as an important alternative for travel again, the COVID-19 impact on mobility could have a substantial remaining positive impact on mobility. Numéro de notice : A2022-391 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/17489725.2021.1876259 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1080/17489725.2021.1876259 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100682
in Journal of location-based services > vol 16 n° 1 (March 2022) . - pp 1 - 24[article]GIS-based employment availabilities by mode of transport in Kuwait / S. Alkheder in Applied geomatics, vol 14 n° 1 (March 2022)PermalinkApplication of machine learning to predict transport modes from GPS, accelerometer, and heart rate data / Santosh Giri in International Journal of Health Geographics, vol 21 (2022)PermalinkCréation d’un indicateur de qualité de la desserte des transports pour des parcelles à une échelle locale / Nick Lin (2022)PermalinkGIS-based survey over the public transport strategy: An instrument for economic and sustainable urban traffic planning / Gabriela Droj in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)PermalinkMise en place d’outils collaboratifs pour une maquette BIM orientée 7D en vue de l’exploitation et de la maintenance des infrastructures de transport public / Eva Ivanova (2022)PermalinkUtilisations multiples de FME pour automatiser les traitements d’une collectivité / Emma Bolmin (2022)PermalinkModeling transit-assisted hurricane evacuation through socio-spatial networks / Yan Yang in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)PermalinkImpact of travel time uncertainties on modeling of spatial accessibility: a comparison of street data sources / Yan Lin in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)PermalinkMachine learning for inference: using gradient boosting decision tree to assess non-linear effects of bus rapid transit on house prices / Linchuan Yang in Annals of GIS, vol 27 n° 3 (July 2021)PermalinkCellular automata based land-use change simulation considering spatio-temporal influence heterogeneity of light rail transit construction: A case in Nanjing, China / Jiaming Na in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)Permalink