IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 55 n° 8Paru le : 01/08/2017 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierRobust object-based multipass InSAR deformation reconstruction / Jian Kang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Robust object-based multipass InSAR deformation reconstruction Type de document : Article/Communication Auteurs : Jian Kang, Auteur ; Yuanyuan Wang, Auteur ; Marco Körner, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 4239 - 4251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification orientée objet
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] inversion
[Termes IGN] pont
[Termes IGN] surveillance géologique
[Termes IGN] tenseurRésumé : (Auteur) Deformation monitoring by multipass synthetic aperture radar (SAR) interferometry (InSAR) is, so far, the only imaging-based method to assess millimeter-level deformation over large areas from space. Past research mostly focused on the optimal retrieval of deformation parameters on the basis of a single pixel or a pixel cluster. Only until recently, the first demonstration of object-based urban infrastructure monitoring by fusing InSAR and the semantic classification labels derived from optical images was presented by Wang et al. Given such classification labels in the SAR image, we propose a general framework for object-based InSAR parameter retrieval, where the parameters of the whole object are jointly estimated by the inversion of a regularized tensor model instead of pixelwise. Our approach does not assume the stationarity of each sample in the object, which is usually assumed in other pixel cluster-based methods, such as SqueeSAR. In addition, to handle outliers in real data, a robust phase recovery step prior to parameter retrieval is also introduced. In typical settings, the proposed method outperforms the current pixelwise estimators, e.g., periodogram, by a factor of several tens in the accuracy of the linear deformation estimates. Last but not least, for a practical demonstration on bridge monitoring, we present a full workflow of long-term bridge monitoring using the proposed approach. Numéro de notice : A2017-492 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2684424 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2684424 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86422
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4239 - 4251[article]Superpixel-based intrinsic image decomposition of hyperspectral images / Xudong Jin in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Superpixel-based intrinsic image decomposition of hyperspectral images Type de document : Article/Communication Auteurs : Xudong Jin, Auteur ; Yanfeng Gu, Auteur Année de publication : 2017 Article en page(s) : pp 4285 - 4295 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification pixellaire
[Termes IGN] décomposition d'image
[Termes IGN] décomposition du pixel
[Termes IGN] image hyperspectrale
[Termes IGN] matrice
[Termes IGN] méthode de réduction d'énergieRésumé : (Auteur) In this paper, we propose a novel superpixel-based intrinsic image decomposition (SIID) framework for hyperspectral images. Intrinsic images are usually referred to the separation of shading and reflectance components from an input image. Considering the high dimensionality of hyperspectral images, we further decompose the shading component into the product of environment illumination and surface orientation changes, thus modeling the problem more properly. The proposed method consists of the following steps. First, we build two superpixel segmentation maps of different scales, i.e., a finer one that is oversegmented and a coarser one that is undersegmented. Based on the observation that the finer superpixel map achieves a higher segmentation accuracy, whereas the coarser superpixel map tends to reserve the objectness of the original image, we model the SIID decomposition problem in a matrix form based on the finer superpixel map and define a constraint matrix by integrating the information in the coarser superpixel map. The constraint matrix is introduced as a secondary constraint in order to make the ill-posed IID problem solvable. Finally, we transform the original decomposition problem into minimizing the Frobenius norm of the proposed matrix energy function and iteratively derive the solution. Our experimental results demonstrate that the proposed method is able to achieve a performance outperforming the state-of-the-art while making a great improvement in efficiency. Numéro de notice : A2017-493 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2690445 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2690445 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86423
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4285 - 4295[article]A novel preunmixing framework for efficient detection of linear mixtures in hyperspectral images / Andrea Marinoni in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : A novel preunmixing framework for efficient detection of linear mixtures in hyperspectral images Type de document : Article/Communication Auteurs : Andrea Marinoni, Auteur ; Antonio J. Plaza, Auteur ; Paolo Gamba, Auteur Année de publication : 2017 Article en page(s) : pp 4325 - 4333 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] attribut géomètrique
[Termes IGN] classification pixellaire
[Termes IGN] combinaison linéaire
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)Résumé : (Auteur) In order to provide reliable information about the instantaneous field of view considered in hyperspectral images through spectral unmixing, understanding the kind of mixture that occurs over each pixel plays a crucial role. In this paper, in order to detect nonlinear mixtures, a method for fast identification of linear mixtures is introduced. The proposed method does not need statistical information and performs an a priori test on the spectral linearity of each pixel. It uses standard least squares optimization to achieve estimates of the likelihood of occurrence of linear combinations of endmembers by taking advantage of the geometrical properties of hyperspectral signatures. Experimental results on both real and synthetic data sets show that the aforesaid algorithm is actually able to deliver a reliable and thorough assessment of the kind of mixtures present in the pixels of the scene. Numéro de notice : A2017-494 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691319 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691319 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86424
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4325 - 4333[article]Simultaneous estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from multiple-satellite data / Han Ma in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Simultaneous estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from multiple-satellite data Type de document : Article/Communication Auteurs : Han Ma, Auteur ; Giang Liu, Auteur ; Shunlin Liang, Auteur ; Zhiqiang Xiao, Auteur Année de publication : 2017 Article en page(s) : pp 43334 - 4354 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] image SPOT-Végétation
[Termes IGN] image Terra-MISR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice foliaire
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Snow Index
[Termes IGN] photosynthèse
[Termes IGN] surveillance écologiqueRésumé : (Auteur) Leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and surface broadband albedo are three routinely generated land-surface parameters from satellite observations, which have been widely used in land-surface modeling and environmental monitoring. Currently, most global land products are retrieved separately from individual satellite data. Many issues, such as data gaps, spatial and temporal inconsistencies, and insufficient accuracy under certain conditions resulting from the inadequacies of single-sensor observations, have made the incorporation of multiple sensors a reasonable solution. In this paper, an approach to simultaneous estimation of LAI, broadband albedo, and FAPAR from multiple-satellite sensors is further refined. The method, improved from that proposed in an earlier study using Moderate Resolution Imaging Spectroradiometer (MODIS) data, consists of several steps. First, a coupled dynamic and radiative-transfer model based on MODIS, SPOT/VEGETATION, and Multiangle Imaging SpectroRadiometer data was developed to retrieve LAI values and use them to construct a time-evolving dynamic model. Second, an iteration process with predefined exit criteria was developed to obtain consistent gap-filled LAI estimates. Third, a spectral albedo based on the retrieved LAI values was simulated using a radiative-transfer model and then converted to a broadband albedo using empirical methods. Snow-covered pixels identified by normalized difference snow index thresholds were adjusted to the weighted average of the underlying albedo and the maximum snow albedo. Finally, the FAPAR of green vegetation was calculated as a combination of the albedo at the top of the canopy, the soil albedo, and the transmittance of the PAR down to the background. Validation of retrieved LAI, albedo, and FAPAR values obtained from multiple-satellite data over ten study sites has demonstrated that the proposed method can produce more accurate products than presently distributed global products. Numéro de notice : A2017-495 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691542 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691542 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86435
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 43334 - 4354[article]Morphologically decoupled structured sparsity for rotation-invariant hyperspectral image analysis / Saurabh Prasad in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Morphologically decoupled structured sparsity for rotation-invariant hyperspectral image analysis Type de document : Article/Communication Auteurs : Saurabh Prasad, Auteur ; Demetrio Labate, Auteur ; Mishan Cui, Auteur ; Yuhang Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 4355 - 4366 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classificateur paramétrique
[Termes IGN] classification spectrale
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] morphologie mathématique
[Termes IGN] primitive géométrique
[Termes IGN] réflectance spectraleRésumé : (Auteur) Hyperspectral imagery has emerged as a popular sensing modality for a variety of applications, and sparsity-based methods were shown to be very effective to deal with challenges coming from high dimensionality in most hyperspectral classification problems. In this paper, we challenge the conventional approach to hyperspectral classification that typically builds sparsity-based classifiers directly on spectral reflectance features or features derived directly from the data. We assert that hyperspectral image (HSI) processing can benefit very significantly by decoupling data into geometrically distinct components since the resulting decoupled components are much more suitable for sparse representation-based classifiers. Specifically, we apply morphological separation to decouple data into texture and cartoon-like components, which are sparsely represented using local discrete cosine bases and multiscale shearlets, respectively. In addition to providing a structured sparse representation, this approach allows us to build classifiers with invariance properties specific to each geometrically distinct component of the data. The experimental results using real-world HSI data sets demonstrate the efficacy of the proposed framework for classifying multichannel imagery under a variety of adverse conditions - in particular, small training sample size, additive noise, and rotational variabilities between training and test samples. Numéro de notice : A2017-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691607 En ligne : http://dx.doi.org./10.1109/TGRS.2017.2691607 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86437
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4355 - 4366[article]From subpixel to superpixel : a novel fusion framework for hyperspectral image classification / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : From subpixel to superpixel : a novel fusion framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Ting Lu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4398 - 4411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] combinaison linéaire
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Supervised classification of hyperspectral images (HSI) is a very challenging task due to the existence of noisy and mixed spectral characteristics. Recently, the widely developed spectral unmixing techniques offer the possibility to extract spectral mixture information at a subpixel level, which can contribute to the categorization of seriously mixed spectral pixels. Besides, it has been demonstrated that the discrimination between different materials will be improved by integrating the geometry and structure information, which can be derived from the variance between neighboring pixels. Furthermore, by incorporating the spatial context, the superpixel-based spectral-spatial similarity information can be used to smooth classification results in homogeneous regions. Therefore, a novel fusion framework for HSI classification that combines subpixel, pixel, and superpixel-based complementary information is proposed in this paper. Here, both feature fusion and decision fusion schemes are introduced. For the feature fusion scheme, the first step is to extract subpixel-level, pixel-level, and superpixel-level features from HSI, respectively. Then, the multiple feature-induced kernels are fused to form one composite kernel, which is incorporated with a support vector machine (SVM) classifier for label assignment. For the decision fusion scheme, class probabilities based on three different features are estimated by the probabilistic SVM classifier first. Then, the class probabilities are adaptively fused to form a probabilistic decision rule for classification. Experimental results tested on different real HSI images can demonstrate the effectiveness of the proposed fusion schemes in improving discrimination capability, when compared with the classification results relied on each individual feature. Numéro de notice : A2017-654 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691906 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691906 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86439
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4398 - 4411[article]Learning a discriminative distance metric with label consistency for scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Learning a discriminative distance metric with label consistency for scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Hao Deng, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4427 - 4440 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] apprentissage dirigé
[Termes IGN] image hyperspectrale
[Termes IGN] métrique
[Termes IGN] précision de la classificationRésumé : (Auteur) To achieve high scene classification performance of high spatial resolution remote sensing images (HSR-RSIs), it is important to learn a discriminative space in which the distance metric can precisely measure both similarity and dissimilarity of features and labels between images. While the traditional metric learning methods focus on preserving interclass separability, label consistency (LC) is less involved, and this might degrade scene images classification accuracy. Aiming at considering intraclass compactness in HSR-RSIs, we propose a discriminative distance metric learning method with LC (DDML-LC). The DDML-LC starts from the dense scale invariant feature transformation features extracted from HSR-RSIs, and then uses spatial pyramid maximum pooling with sparse coding to encode the features. In the learning process, the intraclass compactness and interclass separability are enforced while the global and local LC after the feature transformation is constrained, leading to a joint optimization of feature manifold, distance metric, and label distribution. The learned metric space can scale to discriminate out-of-sample HSR-RSIs that do not appear in the metric learning process. Experimental results on three data sets demonstrate the superior performance of the DDML-LC over state-of-the-art techniques in HSR-RSI classification. Numéro de notice : A2017-498 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2692280 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2692280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86440
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4427 - 4440[article]Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks / Shaohui Mei in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks Type de document : Article/Communication Auteurs : Shaohui Mei, Auteur ; Jingyu Ji, Auteur ; Junhui Hou, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4520 - 4533 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] extraction de couche
[Termes IGN] filtrage numérique d'image
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Convolutional neural network (CNN) is well known for its capability of feature learning and has made revolutionary achievements in many applications, such as scene recognition and target detection. In this paper, its capability of feature learning in hyperspectral images is explored by constructing a five-layer CNN for classification (C-CNN). The proposed C-CNN is constructed by including recent advances in deep learning area, such as batch normalization, dropout, and parametric rectified linear unit (PReLU) activation function. In addition, both spatial context and spectral information are elegantly integrated into the C-CNN such that spatial-spectral features are learned for hyperspectral images. A companion feature-learning CNN (FL-CNN) is constructed by extracting fully connected feature layers in this C-CNN. Both supervised and unsupervised modes are designed for the proposed FL-CNN to learn sensor-specific spatial-spectral features. Extensive experimental results on four benchmark data sets from two well-known hyperspectral sensors, namely airborne visible/infrared imaging spectrometer (AVIRIS) and reflective optics system imaging spectrometer (ROSIS) sensors, demonstrate that our proposed C-CNN outperforms the state-of-the-art CNN-based classification methods, and its corresponding FL-CNN is very effective to extract sensor-specific spatial-spectral features for hyperspectral application Numéro de notice : A2017-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2693346 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2693346 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86441
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4520 - 4533[article]Modeling canopy reflectance over sloping terrain based on path length correction / Gaofei Yin in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Modeling canopy reflectance over sloping terrain based on path length correction Type de document : Article/Communication Auteurs : Gaofei Yin, Auteur ; Ainong Li, Auteur ; Wei Zhao, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4597 - 4609 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] distorsion du signal
[Termes IGN] figuré du terrain
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] montagne
[Termes IGN] pente
[Termes IGN] réflectance végétaleRésumé : (Auteur) Sloping terrain induces distortion of canopy reflectance (CR), and the retrieval of biophysical variables from remote sensing data needs to account for topographic effects. We developed a 1-D model (the path length correction (PLC) based model) for simulating CR over sloping terrain. The effects of sloping terrain on single-order and diffuse scatterings are accounted for by PLC and modification of the fraction of incoming diffuse irradiance, respectively. The PLC model was validated via both Monte Carlo and remote sensing image simulations. The comparison with the Monte Carlo simulation revealed that the PLC model can capture the pattern of slope-induced reflectance distortion with high accuracy (red band: R2 = 0.88; root-mean-square error (RMSE) = 0.0045; relative RMSE (RRMSE) = 15%; near infrared response (NIR) band: R2 = 0.79; RMSE = 0.041; RRMSE = 16%). The comparison of the PLC-simulated results with remote sensing observations acquired by the Landsat8-OLI sensor revealed an accuracy similar to that with the Monte Carlo simulation (red band: R2 = 0.83; RMSE = 0.0053; RRMSE = 13%; NIR band: R2 = 0.77; RMSE = 0.023; RRMSE = 8%). To further validate the PLC model, we used it to implement topographic normalization; the results showed a large reduction in topographic effects after normalization, which implied that the PLC model captures reflectance variations caused by terrain. The PLC model provides a promising tool to improve the simulation of CR and the retrieval of biophysical variables over mountainous regions. Numéro de notice : A2017-500 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2694483 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2694483 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86442
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4597 - 4609[article]Parallax-tolerant aerial image georegistration and efficient camera pose refinement—without piecewise homographies / Hadi AliAkbarpour in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Parallax-tolerant aerial image georegistration and efficient camera pose refinement—without piecewise homographies Type de document : Article/Communication Auteurs : Hadi AliAkbarpour, Auteur ; Kannappan Palaniappan, Auteur ; Guna Seetharaman, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4618 - 4637 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] bruit (théorie du signal)
[Termes IGN] caméra numérique
[Termes IGN] compensation par faisceaux
[Termes IGN] décomposition d'image
[Termes IGN] géoréférencement
[Termes IGN] image aérienne
[Termes IGN] métadonnées
[Termes IGN] orthorectification
[Termes IGN] reconstruction 3D
[Termes IGN] structure-from-motionRésumé : (Auteur) We describe a fast and efficient camera pose refinement and Structure from Motion (SfM) method for sequential aerial imagery with applications to georegistration and 3-D reconstruction. Inputs to the system are 2-D images combined with initial noisy camera metadata measurements, available from on-board sensors (e.g., camera, global positioning system, and inertial measurement unit). Georegistration is required to stabilize the ground-plane motion to separate camera-induced motion from object motion to support vehicle tracking in aerial imagery. In the proposed approach, we recover accurate camera pose and (sparse) 3-D structure using bundle adjustment for sequential imagery (BA4S) and then stabilize the video from the moving platform by analytically solving for the image-plane-to-ground-plane homography transformation. Using this approach, we avoid relying upon image-to-image registration, which requires estimating feature correspondences (i.e., matching) followed by warping between images (in a 2-D space) that is an error prone process for complex scenes with parallax, appearance, and illumination changes. Both our SfM (BA4S) and our analytical ground-plane georegistration method avoid the use of iterative consensus combinatorial methods like RANdom SAmple Consensus which is a core part of many published approaches. BA4S is very efficient for long sequential imagery and is more than 130 times faster than VisualSfM, 35 times faster than MavMap, and about 274 times faster than Pix4D. Various experimental results demonstrate the efficiency and robustness of the proposed pipeline for the refinement of camera parameters in sequential aerial imagery and georegistration. Numéro de notice : A2017-501 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2695172 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2695172 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86444
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4618 - 4637[article]Intersensor statistical matching for pansharpening : theoretical issues and practical solutions / Luciano Alparone in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Intersensor statistical matching for pansharpening : theoretical issues and practical solutions Type de document : Article/Communication Auteurs : Luciano Alparone, Auteur ; Andrea Garzelli, Auteur ; Gemine Vivone, Auteur Année de publication : 2017 Article en page(s) : pp 4682 - 4695 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] appariement d'histogramme
[Termes IGN] appariement d'images
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image multicapteur
[Termes IGN] image panchromatique
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] résolution multipleRésumé : (Auteur) In this paper, the authors investigate the statistical matching of the panchromatic (Pan) image to the multispectral (MS) bands, also known as the histogram matching, for the two main classes of pansharpening methods, i.e., those based on component substitution (CS) or spectral methods and those based on multiresolution analysis (MRA) or spatial methods. Also, hybrid methods combining CS with MRA, like the widespread additive wavelet luminance proportional (AWLP), are investigated. It is shown that all spectral, spatial, and hybrid methods must perform a dynamics matching of the enhancing Pan to the individual MS bands for MRA or a combination of them (the component that shall be substituted) for CS. For hybrid methods, the problem is more complex and both types of histogram matching may be suitable. Such an intersensor balance may be either explicit or implicitly performed by the detail-injection model, e.g., the popular projective and multiplicative injection models. An experimental setup exploiting IKONOS and WorldView-2 data sets demonstrates that a correct histogram matching is the key to attain extra performance from established methods. As a first result of this paper, the AWLP method has been revisited and its performance significantly improved by simply performing the histogram matching of Pan to the individual MS bands, rather than to the intensity component, thereby losing the original proportionality feature. Numéro de notice : A2017-502 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2697943 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2697943 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86447
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4682 - 4695[article]Learning and transferring deep joint spectral–spatial features for hyperspectral classification / Jingxiang Yang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Learning and transferring deep joint spectral–spatial features for hyperspectral classification Type de document : Article/Communication Auteurs : Jingxiang Yang, Auteur ; Yong-Qiang Zhao, Auteur ; Jonathan Cheung-Wai Chan, Auteur Année de publication : 2017 Article en page(s) : pp 4729 - 4742 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage numérique d'image
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Feature extraction is of significance for hyperspectral image (HSI) classification. Compared with conventional hand-crafted feature extraction, deep learning can automatically learn features with discriminative information. However, two issues exist in applying deep learning to HSIs. One issue is how to jointly extract spectral features and spatial features, and the other one is how to train the deep model when training samples are scarce. In this paper, a deep convolutional neural network with two-branch architecture is proposed to extract the joint spectral-spatial features from HSIs. The two branches of the proposed network are devoted to features from the spectral domain as well as the spatial domain. The learned spectral features and spatial features are then concatenated and fed to fully connected layers to extract the joint spectral-spatial features for classification. When the training samples are limited, we investigate the transfer learning to improve the performance. Low and mid-layers of the network are pretrained and transferred from other data sources; only top layers are trained with limited training samples extracted from the target scene. Experiments on Airborne Visible/Infrared Imaging Spectrometer and Reflective Optics System Imaging Spectrometer data demonstrate that the learned deep joint spectral-spatial features are discriminative, and competitive classification results can be achieved when compared with state-of-the-art methods. The experiments also reveal that the transferred features boost the classification performance. Numéro de notice : A2017-503 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2698503 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2698503 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86448
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4729 - 4742[article]