ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 130Paru le : 01/08/2017 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2017081 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2017083 | DEP-EXM | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2017082 | DEP-EAF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierA higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : A higher order conditional random field model for simultaneous classification of land cover and land use Type de document : Article/Communication Auteurs : Lena Albert, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2017 Article en page(s) : pp 63 - 80 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification à base de connaissances
[Termes IGN] classification automatique
[Termes IGN] classification pixellaire
[Termes IGN] image aérienne
[Termes IGN] inférence
[Termes IGN] occupation du sol
[Termes IGN] prise en compte du contexte
[Termes IGN] relation sémantique
[Termes IGN] utilisation du solRésumé : (Auteur) We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent superpixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intralayer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by interlayer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the superpixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas. Numéro de notice : A2017-510 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.04.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.04.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86456
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 63 - 80[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A graph-based approach to detect spatiotemporal dynamics in satellite image time series / Fabio Guttler in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : A graph-based approach to detect spatiotemporal dynamics in satellite image time series Type de document : Article/Communication Auteurs : Fabio Guttler, Auteur ; Dino Ienco, Auteur ; Jordi Nin, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 92 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agriculture
[Termes IGN] analyse d'image orientée objet
[Termes IGN] dynamique spatiale
[Termes IGN] extraction automatique
[Termes IGN] France (administrative)
[Termes IGN] graphe
[Termes IGN] image Landsat
[Termes IGN] série temporelleRésumé : (Auteur) Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics. Numéro de notice : A2017-511 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.05.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.05.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86457
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 92 - 107[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks / Rasha Alshehhi in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks Type de document : Article/Communication Auteurs : Rasha Alshehhi, Auteur ; Prashanth Reddy Marpu, Auteur ; Wei Lee Woon, Auteur ; Mauro Dalla Mura, Auteur Année de publication : 2017 Article en page(s) : pp 139 - 149 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] architecture de réseau
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection du bâti
[Termes IGN] extraction automatique
[Termes IGN] extraction du réseau routier
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à haute résolution
[Termes IGN] réseau neuronal convolutif
[Termes IGN] tachèle
[Termes IGN] test de performance
[Termes IGN] zone urbaineRésumé : (Auteur) Extraction of man-made objects (e.g., roads and buildings) from remotely sensed imagery plays an important role in many urban applications (e.g., urban land use and land cover assessment, updating geographical databases, change detection, etc). This task is normally difficult due to complex data in the form of heterogeneous appearance with large intra-class and lower inter-class variations. In this work, we propose a single patch-based Convolutional Neural Network (CNN) architecture for extraction of roads and buildings from high-resolution remote sensing data. Low-level features of roads and buildings (e.g., asymmetry and compactness) of adjacent regions are integrated with Convolutional Neural Network (CNN) features during the post-processing stage to improve the performance. Experiments are conducted on two challenging datasets of high-resolution images to demonstrate the performance of the proposed network architecture and the results are compared with other patch-based network architectures. The results demonstrate the validity and superior performance of the proposed network architecture for extracting roads and buildings in urban areas. Numéro de notice : A2017-512 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.05.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.05.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86458
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 139 - 149[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data Type de document : Article/Communication Auteurs : Timo P Pitkänen, Auteur ; Niina Käyhkö, Auteur Année de publication : 2017 Article en page(s) : pp 150 - 161 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse diachronique
[Termes IGN] arbre (flore)
[Termes IGN] boisement naturel
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité des points
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur de classification
[Termes IGN] image Landsat
[Termes IGN] orthoimage
[Termes IGN] prairie
[Termes IGN] structure de données localiséesRésumé : (Auteur) Mapping structural changes in vegetation dynamics has, for a long time, been carried out using satellite images, orthophotos and, more recently, airborne lidar acquisitions. Lidar has established its position as providing accurate material for structure-based analyses but its limited availability, relatively short history, and lack of spectral information, however, are generally impeding the use of lidar data for change detection purposes. A potential solution in respect of detecting both contemporary vegetation structures and their previous trajectories is to combine lidar acquisitions with optical remote sensing data, which can substantially extend the coverage, span and spectral range needed for vegetation mapping. In this study, we tested the simultaneous use of a single low-density lidar data set, a series of Landsat satellite frames and two high-resolution orthophotos to detect vegetation succession related to grassland overgrowth, i.e. encroachment of woody plants into semi-natural grasslands. We built several alternative Random Forest models with different sets of variables and tested the applicability of respective data sources for change detection purposes, aiming at distinguishing unchanged grassland and woodland areas from overgrown grasslands. Our results show that while lidar alone provides a solid basis for indicating structural differences between grassland and woodland vegetation, and orthophoto-generated variables alone are better in detecting successional changes, their combination works considerably better than its respective parts. More specifically, a model combining all the used data sets reduces the total error from 17.0% to 11.0% and omission error of detecting overgrown grasslands from 56.9% to 31.2%, when compared to model constructed solely based on lidar data. This pinpoints the efficiency of the approach where lidar-generated structural metrics are combined with optical and multitemporal observations, providing a workable framework to identify structurally oriented and dynamically organized landscape phenomena, such as grassland overgrowth. Numéro de notice : A2017-513 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.05.016 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.05.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86459
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 150 - 161[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Evaluation of seasonal variations of remotely sensed leaf area index over five evergreen coniferous forests / Rong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Evaluation of seasonal variations of remotely sensed leaf area index over five evergreen coniferous forests Type de document : Article/Communication Auteurs : Rong Wang, Auteur ; Jing M. Chen, Auteur ; Zhili Liu, Auteur ; Altaf Arain, Auteur Année de publication : 2017 Article en page(s) : pp 187 - 201 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aiguille
[Termes IGN] atmosphère terrestre
[Termes IGN] image Envisat-MERIS
[Termes IGN] indice foliaire
[Termes IGN] Leaf Area Index
[Termes IGN] phénologie
[Termes IGN] Pinophyta
[Termes IGN] placette d'échantillonnage
[Termes IGN] surface du sol
[Termes IGN] surveillance forestière
[Termes IGN] teneur en chlorophylle des feuilles
[Termes IGN] Tracing Radiation and Architecture of Canopies
[Termes IGN] variation saisonnièreRésumé : (Auteur) Seasonal variations of leaf area index (LAI) have crucial controls on the interactions between the land surface and the atmosphere. Over the past decades, a number of remote sensing (RS) LAI products have been developed at both global and regional scales for various applications. These products are so far only validated using ground LAI data acquired mostly in the middle of the growing season. The accuracy of the seasonal LAI variation in these products remains unknown and there are few ground data available for this purpose. We performed regular LAI measurements over a whole year at five coniferous sites using two methods: (1) an optical method with LAI-2000 and TRAC; (2) a direct method through needle elongation monitoring and litterfall collection. We compared seasonal trajectory of LAI from remote sensing (RS LAI) with that from a direct method (direct LAI). RS LAI agrees very well with direct LAI from the onset of needle growth to the seasonal peak (R2 = 0.94, RMSE = 0.44), whereas RS LAI declines earlier and faster than direct LAI from the seasonal peak to the completion of needle fall. To investigate the possible reasons for the discrepancy, the MERIS Terrestrial Chlorophyll Index (MTCI) was compared with RS LAI. Meanwhile, phenological metrics, i.e. the start of growing season (SOS) and the end of growing season (EOS), were extracted from direct LAI, RS LAI and MTCI time series. SOS from RS LAI is later than that from direct LAI by 9.3 ± 4.0 days but earlier than that from MTCI by 2.6 ± 1.9 days. On the contrary, for EOS, RS LAI is later than MTCI by 3.3 ± 8.4 days and much earlier than direct LAI by 30.8 ± 7.2 days. Our results suggest that the seasonal trajectory of RS LAI well captures canopy structural information from the onset of needle growth to the seasonal peak, but is greatly influenced by the decrease in leaf chlorophyll content, as indicated by MTCI, from the seasonal peak to the completion of needle fall. These findings have significant implications for improving existing RS LAI products and terrestrial productivity modeling. Numéro de notice : A2017-514 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.05.017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.05.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86475
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 187 - 201[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Joint classification and contour extraction of large 3D point clouds / Timo Hackel in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Joint classification and contour extraction of large 3D point clouds Type de document : Article/Communication Auteurs : Timo Hackel, Auteur ; Jan Dirk Wegner, Auteur ; Konrad Schindler, Auteur Année de publication : 2017 Article en page(s) : pp 231 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut sémantique
[Termes IGN] classification dirigée
[Termes IGN] compréhension de l'image
[Termes IGN] densité des points
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) We present an effective and efficient method for point-wise semantic classification and extraction of object contours of large-scale 3D point clouds. What makes point cloud interpretation challenging is the sheer size of several millions of points per scan and the non-grid, sparse, and uneven distribution of points. Standard image processing tools like texture filters, for example, cannot handle such data efficiently, which calls for dedicated point cloud labeling methods. It turns out that one of the major drivers for efficient computation and handling of strong variations in point density, is a careful formulation of per-point neighborhoods at multiple scales. This allows, both, to define an expressive feature set and to extract topologically meaningful object contours.
Semantic classification and contour extraction are interlaced problems. Point-wise semantic classification enables extracting a meaningful candidate set of contour points while contours help generating a rich feature representation that benefits point-wise classification. These methods are tailored to have fast run time and small memory footprint for processing large-scale, unstructured, and inhomogeneous point clouds, while still achieving high classification accuracy. We evaluate our methods on the semantic3d.net benchmark for terrestrial laser scans with
points.Numéro de notice : A2017-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.05.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.05.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86476
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 231 - 245[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Local and global evaluation for remote sensing image segmentation / Tengfei Su in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Local and global evaluation for remote sensing image segmentation Type de document : Article/Communication Auteurs : Tengfei Su, Auteur ; Shengwei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 256 - 276 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] discrétisation
[Termes IGN] erreur
[Termes IGN] objet géographique
[Termes IGN] segmentation d'imageRésumé : (Auteur) In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results. Numéro de notice : A2017-516 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.06.003 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.06.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86478
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 256 - 276[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 3D local feature BKD to extract road information from mobile laser scanning point clouds / Yang Bisheng in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : 3D local feature BKD to extract road information from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yang Bisheng, Auteur ; Yuan Liu, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 329 - 343 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classificateur
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité des points
[Termes IGN] données localisées 3D
[Termes IGN] estimation par noyau
[Termes IGN] extraction du réseau routier
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] variable binaireRésumé : (Auteur) Extracting road information from point clouds obtained through mobile laser scanning (MLS) is essential for autonomous vehicle navigation, and has hence garnered a growing amount of research interest in recent years. However, the performance of such systems is seriously affected due to varying point density and noise. This paper proposes a novel three-dimensional (3D) local feature called the binary kernel descriptor (BKD) to extract road information from MLS point clouds. The BKD consists of Gaussian kernel density estimation and binarization components to encode the shape and intensity information of the 3D point clouds that are fed to a random forest classifier to extract curbs and markings on the road. These are then used to derive road information, such as the number of lanes, the lane width, and intersections. In experiments, the precision and recall of the proposed feature for the detection of curbs and road markings on an urban dataset and a highway dataset were as high as 90%, thus showing that the BKD is accurate and robust against varying point density and noise. Numéro de notice : A2017-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.06.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.06.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86479
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 329 - 343[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications / Zhe Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications Type de document : Article/Communication Auteurs : Zhe Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 370 - 384 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection de changement
[Termes IGN] détection de cible
[Termes IGN] fréquence
[Termes IGN] image Landsat
[Termes IGN] restauration d'image
[Termes IGN] série temporelleRésumé : (Auteur) The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection. Numéro de notice : A2017-518 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.06.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.06.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86480
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 370 - 384[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds / Hamid Hamraz in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Hamid Hamraz, Auteur ; Marco A. Contreras, Auteur ; Jun Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 385 - 392 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre caducifolié
[Termes IGN] canopée
[Termes IGN] croissance végétale
[Termes IGN] densité des points
[Termes IGN] distribution spatiale
[Termes IGN] houppier
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Kentucky (Etats-Unis)
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] sous-bois
[Termes IGN] strate végétale
[Termes IGN] structure d'un peuplement forestierRésumé : (Auteur) Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest – a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types. Numéro de notice : A2017-519 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.07.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.07.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86481
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 385 - 392[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe / Cornelius Senf in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe Type de document : Article/Communication Auteurs : Cornelius Senf, Auteur ; Dirk Pflugmacher, Auteur ; Patrick Hostert, Auteur ; Rupert Seidl, Auteur Année de publication : 2017 Article en page(s) : pp 453 - 463 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] Allemagne
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Autriche
[Termes IGN] dynamique spatiale
[Termes IGN] écosystème forestier
[Termes IGN] Europe centrale
[Termes IGN] gestion forestière
[Termes IGN] habitat forestier
[Termes IGN] image Landsat
[Termes IGN] interaction homme-milieu
[Termes IGN] milieu naturel
[Termes IGN] parc naturel national
[Termes IGN] placette d'échantillonnage
[Termes IGN] Pologne
[Termes IGN] République Tchèque
[Termes IGN] série temporelle
[Termes IGN] Slovaquie
[Termes IGN] sylvicultureRésumé : (Auteur) Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr−1 to 0.95% yr−1, and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas. Numéro de notice : A2017-520 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.07.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.07.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86482
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 453 - 463[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt