Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 83 n° 9Paru le : 01/09/2017 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA Stepwise-Then-Orthogonal Regression (STOR) with quality control for optimizing the RFM of high-resolution satellite imagery / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)
[article]
Titre : A Stepwise-Then-Orthogonal Regression (STOR) with quality control for optimizing the RFM of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Chang Li, Auteur ; Xiaojuan Liu, Auteur ; Yongjun Zhang, Auteur ; Zuxun Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 611 - 620 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] contrôle qualité
[Termes IGN] détection d'erreur
[Termes IGN] erreur aléatoire
[Termes IGN] image à haute résolution
[Termes IGN] image SPOT 5
[Termes IGN] modèle par fonctions rationnelles
[Termes IGN] régressionRésumé : (auteur) There are two major problems in Rational Function Model (RFM) solution: (a) Data source error, including gross error, random error, and systematic error; and (b) Model error, including over-parameterization and over-correction issues caused by unnecessary RFM parameters and exaggeration of random error in constant term of error-in-variables (EIV) model, respectively. In order to solve two major problems simultaneously, we propose a new approach named stepwise-then-orthogonal regression (STOR) with quality control. First, RFM parameters are selected by stepwise regression with gross error detection. Second, the revised orthogonal distance regression is utilized to adjust random error and address the overcorrection problem. Third, systematic error is compensated by Fourier series. The performance of conventional strategies and the proposed STOR are evaluated by control and check grids generated from SPOT5 high-resolution imagery. Compared with the least squares regression, partial least squares regression, ridge regression, and stepwise regression, the proposed STOR shows a significant improvement in accuracy. Numéro de notice : A2017-598 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.9.611 En ligne : https://doi.org/10.14358/PERS.83.9.611 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86874
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 9 (September 2017) . - pp 611 - 620[article]A Geometric and Radiometric Simultaneous Correction Model (GRSCM) framework for high-accuracy remotely sensed image preprocessing / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)
[article]
Titre : A Geometric and Radiometric Simultaneous Correction Model (GRSCM) framework for high-accuracy remotely sensed image preprocessing Type de document : Article/Communication Auteurs : Chang Li, Auteur ; Hao Xiong, Auteur Année de publication : 2017 Article en page(s) : pp 621 - 632 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] correction d'image
[Termes IGN] correction géométrique
[Termes IGN] correction radiométrique
[Termes IGN] Ransac (algorithme)
[Termes IGN] restauration d'imageRésumé : (Auteur) The grey value g (x, y) of pixel on radiometric spectrum is regarded as a function of the geometric coordinates (x, y). Hence, there is a unity of opposite relationships between the geometric and radiometric information, such that, these two types of information cannot be separated. Therefore, this paper proposes a novel geometric and radiometric simultaneous correction model (GRSCM) framework inspired and developed from least squares matching (LSM). Based on the Gauss-Markov model, geometric and radiometric correction coefficients are integrated and solved by an iterative method with variable weights in the proposed model. Moreover, many state-of-theart models and methods can be integrated into the proposed general GRSCM framework. In the GRSCM of this paper, RANdom SAmple Consensus (RANSAC), stepwise regression and significance testing are integrated and used. The experimental results demonstrate that the accuracy of the GRSCM is significantly improved compared with that of geometric correction and radiometric correction separately. Numéro de notice : A2017-608 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.9.621 En ligne : https://doi.org/10.14358/PERS.83.9.621 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86886
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 9 (September 2017) . - pp 621 - 632[article]A new GPU bundle adjustment method for large-scale data / Zhou Shunping ; Xiong Xiaodong ; Junfeng Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 9 (September 2017)
[article]
Titre : A new GPU bundle adjustment method for large-scale data Type de document : Article/Communication Auteurs : Zhou Shunping, Auteur ; Xiong Xiaodong, Auteur ; Junfeng Zhu, Auteur Année de publication : 2017 Article en page(s) : pp 633 - 641 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] compensation par faisceaux
[Termes IGN] jeu de données
[Termes IGN] méthode du gradient conjugué
[Termes IGN] processeur graphique
[Termes IGN] traitement parallèleRésumé : (Auteur) We developed a fast and effective bundle adjustment method for large-scale datasets. The preconditioned conjugate gradient (PCG) algorithm and GPU parallel computing technology are simultaneously applied to deal with large-scale data and to accelerate the bundle adjustment process. The whole bundle adjustment process is modified to enable parallel computing. The critical optimization on parallel task assignment and GPU memory usage are specified. The proposed method was tested using 10 datasets. The traditional Levenberg Marquardt (LM) method, advanced PCG method, Wu's method and the proposed GPU parallel computing method are all compared and analyzed. Preliminary results have shown that the proposed method can process a large-scale dataset with about 13,000 images in less than three minutes on a common computer with GPU device. The efficiency of the proposed method is about the same with Wu's method while the accuracy is better. Numéro de notice : A2017-609 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.9.633 En ligne : https://doi.org/10.14358/PERS.83.9.633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86887
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 9 (September 2017) . - pp 633 - 641[article]