Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > zone d'intérêt
zone d'intérêtSynonyme(s)région d'intérêt |
Documents disponibles dans cette catégorie (41)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Multi-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density / Grégoire Vincent in Remote sensing of environment, vol 286 (March 2023)
[article]
Titre : Multi-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density Type de document : Article/Communication Auteurs : Grégoire Vincent, Auteur ; Philippe Verley, Auteur ; Benjamin Brede, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] canopée
[Termes IGN] densité de la végétation
[Termes IGN] données lidar
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] image captée par drone
[Termes IGN] plan de vol
[Termes IGN] rayonnement lumineux
[Termes IGN] réflectance végétale
[Termes IGN] semis de points
[Termes IGN] zone d'intérêtRésumé : (auteur) Leaf area is a key structural characteristic of forest canopies because of the role of leaves in controlling many biological and physical processes occurring at the biosphere-atmosphere transition. High pulse density Airborne Laser Scanning (ALS) holds promise to provide spatially resolved and accurate estimates of plant area density (PAD) in forested landscapes, a key step in understanding forest functioning: phenology, carbon uptake, transpiration, radiative balance etc. Inconsistencies between different ALS sensors is a barrier to generating globally harmonised PAD estimates. The basic assumption on which PAD estimation is based is that light attenuation is proportional to vegetation area density. This study shows that the recorded extinction strongly depends on target detectability which is influenced by laser characteristics (power, sensitivity, wavelength). Three different airborne laser scanners were flown over a wet tropical forest at the Paracou research station in French Guiana. Different sensors, flight heights and transmitted power levels were compared. Light attenuation was retrieved with an open source ray-tracing code (http://amapvox.org). Direct comparison revealed marked differences (up-to 25% difference in profile-averaged light attenuation rate and 50% difference at particular heights) that could only be explained by differences in scanner characteristics. We show how bias which may occur under various acquisition conditions can generally be mitigated by a sensor intercalibration. Alignment of light weight lidar attenuation profiles to ALS reference attenuation profiles is not always satisfactory and we discuss what are the likely sources of discrepancies. Neglecting the dependency of apparent light attenuation on scanner properties may lead to biases in estimated vegetation density commensurate to those affecting light attenuation estimates. Applying intercalibration procedures supports estimation of plant area density independent of acquisition characteristics. Numéro de notice : A2023-169 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113442 Date de publication en ligne : 06/01/2023 En ligne : https://doi.org/10.1016/j.rse.2022.113442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102928
in Remote sensing of environment > vol 286 (March 2023) . - n° 113442[article]Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
[article]
Titre : Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy Type de document : Article/Communication Auteurs : Norbert Haala, Auteur ; Michael Kölle, Auteur ; Michael Cramer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100014 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation automatisée
[Termes IGN] appariement d'images
[Termes IGN] collecte de données
[Termes IGN] compensation par faisceaux
[Termes IGN] données lidar
[Termes IGN] géoréférencement direct
[Termes IGN] image captée par drone
[Termes IGN] orthoimage
[Termes IGN] précision millimétrique
[Termes IGN] semis de points
[Termes IGN] zone d'intérêtRésumé : (auteur) During the last two decades, UAV emerged as standard platform for photogrammetric data collection. Main motivation in that early phase was the cost effective airborne image collection at areas of limited size. This was already feasible by rather simple payloads like an off-the-shelf, compact camera and a navigation-grade GNSS sensor. Meanwhile, dedicated sensor systems enable applications that have not been feasible in the past. One example is the airborne collection of dense 3D point clouds at millimetre accuracies, which will be discussed in our paper. For this purpose, we collect both LiDAR and image data from a joint UAV platform and apply a so-called hybrid georeferencing. This process integrates photogrammetric bundle block adjustment with direct georeferencing of LiDAR point clouds. By these means georeferencing accuracy is improved for the LiDAR point cloud by an order of magnitude. We demonstrate the feasibility of our approach in the context of a project, which aims on monitoring of subsidence of about 10 mm/year. The respective area of interest is defined by a ship lock and its vicinity of mixed use. In that area, multiple UAV flights were captured and evaluated for a period of three years. As our main contribution, we demonstrate that 3D point accuracies at sub-centimetre level can be achieved. This is realized by joint orientation of laser scans and images in a hybrid adjustment framework, which enables accuracies corresponding to the GSD of the captured imagery. Numéro de notice : A2022-236 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100014Get rights and content Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100014Get rights and content Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100146
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100014[article]Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion / Nitzan Malachy in Remote sensing, vol 14 n° 4 (February-2 2022)
[article]
Titre : Comparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion Type de document : Article/Communication Auteurs : Nitzan Malachy, Auteur ; Imri Zadak, Auteur ; Offer Rozenstein, Auteur Année de publication : 2022 Article en page(s) : n° 810 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse spectrale
[Termes IGN] covariance
[Termes IGN] cultures
[Termes IGN] données lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image captée par drone
[Termes IGN] modèle de croissance végétale
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] zone d'intérêtRésumé : (auteur) Although it is common to consider crop height in agricultural management, variation in plant height within the field is seldom addressed because it is challenging to assess from discrete field measurements. However, creating spatial crop height models (CHMs) using structure from motion (SfM) applied to unmanned aerial vehicle (UAV) imagery can easily be done. Therefore, looking into intra- and inter-season height variability has the potential to provide regular information for precision management. This study aimed to test different approaches to deriving crop height from CHM and subsequently estimate the crop coefficient (Kc). CHMs were created for three crops (tomato, potato, and cotton) during five growing seasons, in addition to manual height measurements. The Kc time-series were derived from eddy-covariance measurements in commercial fields and estimated from multispectral UAV imagery in small plots, based on known relationships between Kc and spectral vegetation indices. A comparison of four methods (Mean, Sample, Median, and Peak) was performed to derive single height values from CHMs. Linear regression was performed between crop height estimations from CHMs against manual height measurements and Kc. Height was best predicted using the Mean and the Sample methods for all three crops (R2 = 0.94, 0.84, 0.74 and RMSE = 0.056, 0.071, 0.051 for cotton, potato, and tomato, respectively), as was the prediction of Kc (R2 = 0.98, 0.84, 0.8 and RMSE = 0.026, 0.049, 0.023 for cotton, potato, and tomato, respectively). The Median and Peak methods had far less success in predicting both, and the Peak method was shown to be sensitive to the size of the area analyzed. This study shows that CHMs can help growers identify spatial heterogeneity in crop height and estimate the crop coefficient for precision irrigation applications. Numéro de notice : A2022-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14040810 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.3390/rs14040810 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99774
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 810[article]Novel model for predicting individuals’ movements in dynamic regions of interest / Xiaoqi Shen in GIScience and remote sensing, vol 59 n° 1 (2022)
[article]
Titre : Novel model for predicting individuals’ movements in dynamic regions of interest Type de document : Article/Communication Auteurs : Xiaoqi Shen, Auteur ; Wenzhong Shi, Auteur ; Pengfei Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 250 - 271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] chaîne de Markov
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] extraction de données
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de simulation
[Termes IGN] réseau social
[Termes IGN] zone d'activité économique
[Termes IGN] zone d'intérêtRésumé : (auteur) The increasing amount of geotagged social media data provides a possible resource for location prediction. However, existing location prediction methods rarely incorporate temporal changes in mobility patterns, which could lead to unreliable predictions. In particular, human mobility patterns have changed greatly in the COVID-19 era. We propose a novel model to predict individuals’ movements in dynamic regions of interest (ROIs), taking into account changes in activity areas and movement regularity. To address changes in the activity areas, we design a new updating strategy that can ensure the realistic extraction of an individual’s ROIs. Then, we develop an integration model for changes in the movement regularity based on two newly proposed prediction methods that consider both rapid and slow changes. The proposed integration model is evaluated based on five real-world social media datasets; three Weibo datasets related to COVID-19 collected in three Chinese cities, one Twitter dataset collected in New York and one dense GPS dataset. The results demonstrate that the proposed model can achieve better performances than state-of-the-art models, especially when mobility patterns change greatly. Combined with related pandemic data, this study will benefit pandemic prevention and control. Numéro de notice : A2022-131 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15481603.2022.2026637 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15481603.2022.2026637 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99719
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 250 - 271[article]Exploring data fusion for multi-object detection for intelligent transportation systems using deep learning / Amira Mimouna (2022)
Titre : Exploring data fusion for multi-object detection for intelligent transportation systems using deep learning Type de document : Thèse/HDR Auteurs : Amira Mimouna, Auteur ; Abdelmalik Taleb-Ahmed, Directeur de thèse ; Najoua Essoukri Ben Amara, Directeur de thèse Editeur : Valenciennes : Université polytechnique Hauts-de-France Année de publication : 2022 Note générale : bibliographie
Thèse de doctorat pour obtenir le grade de Docteur de l'Université polytechnique Hauts-de-France et l'INSA Hauts-de-France et l'Université de Sousse, spécialité Electronique, Acoustique et TélécommunicationsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection d'objet
[Termes IGN] données publiques
[Termes IGN] entropie
[Termes IGN] profil d'obstacle
[Termes IGN] segmentation d'image
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transformation en ondelettes
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Building reliable environment perception systems is a crucial task for autonomous driving, especially in dense traffic areas. Researching in this field is evolving increasingly. However, we are at the beginning of a research pathway towards a future generation of intelligent transportation systems. In fact, challenging conditions in real-world driving circumstances, infrastructure monitoring, and accurate real-time system response, are the predominant concerns when developing such systems. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems have been mainly based on deep learning and the fusion of different modalities. In this context, firstly, we introduce OLIMP : A heterOgeneous MuLtimodal Dataset for Advanced EnvIronMent Perception . This is the first public, multimodal and synchronized dataset that includes Ultra Wide-Band (UWB) radar data, acoustic data, narrowband radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized frames, including four categories: pedestrians, cyclists, cars and trams. The dataset presents various challenges related to dense urban traffic such as cluttered environments and differentweather conditions. To demonstrate the usefulness of the introduced dataset, we propose, afterwards, a fusion framework that combines the four modalities for multi object detection. The obtained results are promising and spur for future research. In short range settings, UWB radars represent a promising technology for building reliable obstacle detection systems as they are robust to environmental conditions. However, UWB radars suffer from a segmentation challenge: localizing relevant Regions Of Interests (ROIs) within its signals. Therefore, we put froward a segmentation approach to detect ROIs in an environment perception-dedicated UWB radar as a third contribution. Specifically, we implement a differential entropy analysis to detect ROIs. The obtained results show higher performance in terms of obstacle detection compared to state-of-theart techniques, as well as stable robustness even with low amplitude signals. Subsequently, we propose a novel framework that exploits Recurrent Neural Networks (RNNs) with UWB signals for multiple road obstacle detection as a deep learning-based approach. Features are extracted from the time-frequency domain using the discrete wavelet transform and are forwarded to the Long short-term memory (LSTM) network. The obtained results show that the LSTM-based system outperforms the other implemented related techniques in terms of obstacle detection. Note de contenu : 1- Introduction
2- Environment perception system: State of the art
3- OLIMP: A heterogeneous multimodal dataset for advanced environment perception
4- Multiple object detectors using UWB signals
5- Conclusions and perspectivesNuméro de notice : 15289 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Electronique, Acoustique et Télécommunications : Université polytechnique Hauts-de-France : 2022 Organisme de stage : Institut d'électronique, de microélectronique et de nanotechnologie DOI : sans En ligne : https://hal.science/tel-03522730 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101520 Deep learning for toponym resolution: Geocoding based on pairs of toponyms / Jacques Fize in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)PermalinkA deep translation (GAN) based change detection network for optical and SAR remote sensing images / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)PermalinkReprésentation sémantique de données géospatiales au service de l'analyse de changements / Jordan Dorne (2021)PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)PermalinkCrater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)PermalinkA novel deep learning instance segmentation model for automated marine oil spill detection / Shamsudeen Temitope Yekeen in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)PermalinkOntologie d’Alerte Choucas : de la modélisation des connaissances à un outil support d’un raisonnement géovisuel / Matthieu Viry in Geomatica, vol 74 n° 3 (September 2020)PermalinkBreaking the eyes: how do users get started with a coordinated and multiple view geovisualization tool? / Izabela Golebiowska in Cartographic journal (the), Vol 57 n° 3 (August 2020)PermalinkGIS-based multi criteria decision making method to identify potential runoff storage zones within watershed / Vikas Kumar Rana in Annals of GIS, vol 26 n° 2 (April 2020)PermalinkContext-aware convolutional neural network for object detection in VHR remote sensing imagery / Yiping Gong in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)Permalink