ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 132Paru le : 01/10/2017 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2017101 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2017102 | DEP-EAF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
081-2017103 | DEP-EXM | Revue | Saint-Mandé | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierSignificant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests / Jing Liu in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : Significant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests Type de document : Article/Communication Auteurs : Jing Liu, Auteur ; Andrew K. Skidmore, Auteur ; Marco Heurich, Auteur ; Tiejun Wang, Auteur Année de publication : 2017 Article en page(s) : pp 77 - 87 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Allemagne
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt alpestre
[Termes IGN] hauteur des arbres
[Termes IGN] lever topographique
[Termes IGN] normalisation
[Termes IGN] reliefRésumé : (Auteur) As an important metric for describing vertical forest structure, the plant area index (PAI) profile is used for many applications including biomass estimation and wildlife habitat assessment. PAI profiles can be estimated with the vertically resolved gap fraction from airborne LiDAR data. Most research utilizes a height normalization algorithm to retrieve local or relative height by assuming the terrain to be flat. However, for many forests this assumption is not valid. In this research, the effect of topographic normalization of airborne LiDAR data on the retrieval of PAI profile was studied in a mountainous forest area in Germany. Results show that, although individual tree height may be retained after topographic normalization, the spatial arrangement of trees is changed. Specifically, topographic normalization vertically condenses and distorts the PAI profile, which consequently alters the distribution pattern of plant area density in space. This effect becomes more evident as the slope increases. Furthermore, topographic normalization may also undermine the complexity (i.e., canopy layer number and entropy) of the PAI profile. The decrease in PAI profile complexity is not solely determined by local topography, but is determined by the interaction between local topography and the spatial distribution of each tree. This research demonstrates that when calculating the PAI profile from airborne LiDAR data, local topography needs to be taken into account. We therefore suggest that for ecological applications, such as vertical forest structure analysis and modeling of biodiversity, topographic normalization should not be applied in non-flat areas when using LiDAR data. Numéro de notice : A2017-639 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.08.005 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.08.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86992
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 77 - 87[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Hyperspectral dimensionality reduction for biophysical variable statistical retrieval / Juan Pablo Rivera-Caicedo in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : Hyperspectral dimensionality reduction for biophysical variable statistical retrieval Type de document : Article/Communication Auteurs : Juan Pablo Rivera-Caicedo, Auteur ; Jochem Verrelst, Auteur ; Jordi Munoz-Mari, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 88 - 101 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] image HYMAP
[Termes IGN] image hyperspectrale
[Termes IGN] Leaf Area Index
[Termes IGN] régression linéaire
[Termes IGN] variable biophysique (végétation)Résumé : (Auteur) Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to retrieve leaf area index (LAI): (1) a simulated PROSAIL reflectance data (2101 bands), and (2) a field dataset from airborne HyMap data (125 bands). For the majority of MLRAs, applying first a DR method leads to superior retrieval accuracies and substantial gains in processing speed as opposed to using all bands into the regression algorithm. This was especially noticeable for the PROSAIL dataset: in the most extreme case, using the classical linear regression (LR), validation results (RMSECV) improved from 0.06 (12.23) without a DR method to 0.93 (0.53) when combining it with a best performing DR method (i.e., CCA or OPLS). However, these DR methods no longer excelled when applied to noisy or real sensor data such as HyMap. Then the combination of kernel CCA (KCCA) with LR, or a classical PCA and PLS with a MLRA showed more robust performances ( of 0.93). Gaussian processes regression (GPR) uncertainty estimates revealed that LAI maps as trained in combination with a DR method can lead to lower uncertainties, as opposed to using all HyMap bands. The obtained results demonstrated that, in general, biophysical variable retrieval from hyperspectral data can largely benefit from dimensionality reduction in both accuracy and computational efficiency. Numéro de notice : A2017-640 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.08.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.08.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86995
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 88 - 101[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds / Loïc Landrieu in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds Type de document : Article/Communication Auteurs : Loïc Landrieu , Auteur ; Hugo Raguet, Auteur ; Bruno Vallet , Auteur ; Clément Mallet , Auteur ; Martin Weinmann, Auteur Année de publication : 2017 Projets : 1-Pas de projet / Article en page(s) : pp 102 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut sémantique
[Termes IGN] données localisées 3D
[Termes IGN] interprétation automatique
[Termes IGN] lissage de données
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régularisation d'image
[Termes IGN] scène
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, we introduce a mathematical framework for obtaining spatially smooth semantic labelings of 3D point clouds from a pointwise classification. We argue that structured regularization offers a more versatile alternative to the standard graphical model approach. Indeed, our framework allows us to choose between a wide range of fidelity functions and regularizers, influencing the properties of the solution. In particular, we investigate the conditions under which the smoothed labeling remains probabilistic in nature, allowing us to measure the uncertainty associated with each label. Finally, we present efficient algorithms to solve the corresponding optimization problems.
To demonstrate the performance of our approach, we present classification results derived for standard benchmark datasets. We demonstrate that the structured regularization framework offers higher accuracy at a lighter computational cost in comparison to the classic graphical model approach.Numéro de notice : A2017-641 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.08.010 Date de publication en ligne : 11/09/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.08.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86998
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 102 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Documents numériques
en open access
A structured regularization framework ... - preprintAdobe Acrobat PDF Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion / San Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion Type de document : Article/Communication Auteurs : San Jiang, Auteur ; Wanshou Jiang, Auteur Année de publication : 2017 Article en page(s) : pp 140 - 161 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme STA
[Termes IGN] compensation par faisceaux
[Termes IGN] drone
[Termes IGN] image aérienne oblique
[Termes IGN] reconstruction 3D
[Termes IGN] structure-from-motionRésumé : (Auteur) The primary contribution of this paper is an efficient Structure from Motion (SfM) solution for oblique unmanned aerial vehicle (UAV) images. First, an algorithm, considering spatial relationship constraints between image footprints, is designed for match pair selection with the assistance of UAV flight control data and oblique camera mounting angles. Second, a topological connection network (TCN), represented by an undirected weighted graph, is constructed from initial match pairs, which encodes the overlap areas and intersection angles into edge weights. Then, an algorithm, termed MST-Expansion, is proposed to extract the match graph from the TCN, where the TCN is first simplified by a maximum spanning tree (MST). By further analysis of the local structure in the MST, expansion operations are performed on the vertices of the MST for match graph enhancement, which is achieved by introducing critical connections in the expansion directions. Finally, guided by the match graph, an efficient SfM is proposed. Under extensive analysis and comparison, its performance is verified by using three oblique UAV datasets captured with different multi-camera systems. Experimental results demonstrate that the efficiency of image matching is improved, with speedup ratios ranging from 19 to 35, and competitive orientation accuracy is achieved from both relative bundle adjustment (BA) without GCPs (Ground Control Points) and absolute BA with GCPs. At the same time, images in the three datasets are successfully oriented. For the orientation of oblique UAV images, the proposed method can be a more efficient solution. Numéro de notice : A2017-642 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.09.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.09.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86999
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 140 - 161[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Stand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : Stand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa Type de document : Article/Communication Auteurs : Timothy Dube, Auteur ; Mbulisi Sibanda, Auteur ; Cletah Shoko, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2017 Article en page(s) : pp 162 - 169 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] cubage de peuplement
[Termes IGN] données auxiliaires
[Termes IGN] écosystème forestier
[Termes IGN] Eucalyptus camaldulensis
[Termes IGN] image SPOT 5
[Termes IGN] KwaZulu-Natal (Afrique du Sud)
[Termes IGN] peuplement forestier
[Termes IGN] régression
[Termes IGN] taillisRésumé : (Auteur) Forest stand volume is one of the crucial stand parameters, which influences the ability of these forests to provide ecosystem goods and services. This study thus aimed at examining the potential of integrating multispectral SPOT 5 image, with ancillary data (forest age and rainfall metrics) in estimating stand volume between coppiced and planted Eucalyptus spp. in KwaZulu-Natal, South Africa. To achieve this objective, Partial Least Squares Regression (PLSR) algorithm was used. The PLSR algorithm was implemented by applying three tier analysis stages: stage I: using ancillary data as an independent dataset, stage II: SPOT 5 spectral bands as an independent dataset and stage III: combined SPOT 5 spectral bands and ancillary data. The results of the study showed that the use of an independent ancillary dataset better explained the volume of Eucalyptus spp. growing from coppices (adjusted R2 (R2Adj) = 0.54, RMSEP = 44.08 m3/ha), when compared with those that were planted (R2Adj = 0.43, RMSEP = 53.29 m3/ha). Similar results were also observed when SPOT 5 spectral bands were applied as an independent dataset, whereas improved volume estimates were produced when using combined dataset. For instance, planted Eucalyptus spp. were better predicted adjusted R2 (R2Adj) = 0.77, adjusted R2Adj = 0.59, RMSEP = 36.02 m3/ha) when compared with those that grow from coppices (R2 = 0.76, R2Adj = 0.46, RMSEP = 40.63 m3/ha). Overall, the findings of this study demonstrated the relevance of multi-source data in ecosystems modelling. Numéro de notice : A2017-643 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.09.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.09.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87002
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 162 - 169[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt