Silva fennica / Finnish society of forest science (Finlande) . vol 51 n° 5Paru le : 01/10/2017 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierHyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables / Sakari Tuominen in Silva fennica, vol 51 n° 5 (2017)
[article]
Titre : Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables Type de document : Article/Communication Auteurs : Sakari Tuominen, Auteur ; Andras Balazs, Auteur ; Eija Honkavaara, Auteur ; et al., Auteur Année de publication : 2017 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification barycentrique
[Termes IGN] diamètre des arbres
[Termes IGN] étalonnage radiométrique
[Termes IGN] hauteur des arbres
[Termes IGN] image aérienne
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] image RVB
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] peuplement forestier
[Termes IGN] photogrammétrie numérique
[Termes IGN] volume en bois
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest variables related to the volume of growing stock and dimension of the trees, whereas recognition of tree species dominance and proportion of different tree species has been a major complication in remote sensing-based estimation of stand variables. In this study, the use of UAV-borne hyperspectral imagery was examined in combination with a high-resolution photogrammetric canopy height model in estimating forest variables of 298 sample plots. Data were captured from eleven separate test sites under weather conditions varying from sunny to cloudy and partially cloudy. Both calibrated hyperspectral reflectance images and uncalibrated imagery were tested in combination with a canopy height model based on RGB camera imagery using the k-nearest neighbour estimation method. The results indicate that this data combination allows accurate estimation of stand volume, mean height and diameter: the best relative RMSE values for those variables were 22.7%, 7.4% and 14.7%, respectively. In estimating volume and dimension-related variables, the use of a calibrated image mosaic did not bring significant improvement in the results. In estimating the volumes of individual tree species, the use of calibrated hyperspectral imagery generally brought marked improvement in the estimation accuracy; the best relative RMSE values for the volumes for pine, spruce, larch and broadleaved trees were 34.5%, 57.2%, 45.7% and 42.0%, respectively. Numéro de notice : A2017-645 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.7721 En ligne : https://doi.org/10.14214/sf.7721 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87000
in Silva fennica > vol 51 n° 5 (2017)[article]