Détail de l'auteur
Auteur Frank Flechtner |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Remote sensing by satellite gravimetry Type de document : Monographie Auteurs : Thomas Gruber, Éditeur scientifique ; Annette Eicker, Éditeur scientifique ; Frank Flechtner, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 286 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-0365-0009-6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bilan de masse
[Termes IGN] CHAMP (satellite)
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] géocentre
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] nivellement par GPS
[Termes IGN] orbitographie
[Termes IGN] télémétrie laser sur satelliteRésumé : (auteur) Over the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system. Note de contenu : 1- The GFZ GRACE RL06 monthly gravity field time series: Processing details and quality assessment
2- SLR, GRACE and swarm gravity field determination and combination
3- A new approach to Earth’s gravity field modeling using GPS-derived kinematic orbits and baselines
4- Improved estimates of geocenter variability from time-variable gravity and ocean model outputs
5- An assessment of the GOCE high-level processing facility (HPF) released global geopotential models with regional test results in Turkey
6- Next-generation gravity missions: Sino-European numerical simulation comparison exercise
7- Combination analysis of future polar-type gravity mission and GRACE follow-on
8- Gravity field recovery using high-precision, high–low inter-satellite links
9- High-resolution mass trends of the Antarctic ice sheet through a spectral combination of satellite gravimetry and radar altimetry observations
10- The rapid and steady mass loss of the Patagonian icefields throughout the GRACE era: 2002–2017
11- Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system
12- Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements
13- GOCE-derived coseismic gravity gradient changes caused by the 2011 Tohoku-Oki earthquakeNuméro de notice : 28391 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0009-6 En ligne : https://doi.org/10.3390/books978-3-0365-0009-6 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98720 Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space / Roland Pail in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Jonathan Bamber, Auteur ; Richard Biancale, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Annette Eicker, Auteur ; Frank Flechtner, Auteur ; Thomas Gruber, Auteur ; Andreas Güntner, Auteur ; Gerhard Heinzel, Auteur ; Martin Horwath, Auteur ; Laurent Longuevergne, Auteur ; J. Muller, Auteur ; Isabelle Panet , Auteur ; Hubert Savenije, Auteur ; S. Seneviratne, Auteur ; Nico Sneeuw, Auteur ; Tonie M. van Dam, Auteur ; Bert Wouters, Auteur Année de publication : 2019 Projets : 1-Pas de projet / Article en page(s) : pp 48 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] gravimétrie spatiale
[Termes IGN] harmonique sphérique
[Termes IGN] masseRésumé : (auteur) As changes in gravity are directly related to mass variability, satellite missions observing the Earth’s time varying gravity field are a unique tool for observing mass transport processes in the Earth system, such as the water cycle, rapid changes in the cryosphere, oceans, and solid Earth processes, on a global scale. The observation of Earth’s gravity field was successfully performed by the GRACE and GOCE satellite missions, and will be continued by the GRACE Follow-On mission. A comprehensive team of European scientists proposed the next-generation gravity field mission MOBILE in response to the European Space Agency (ESA) call for a Core Mission in the frame of Earth Explorer 10 (EE10). MOBILE is based on the innovative observational concept of a high-low tracking formation with micrometer ranging accuracy, complemented by new instrument concepts. Since a high-low tracking mission primarily observes the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic. This geometry significantly reduces artefacts of previous along-track ranging low-low formations (GRACE, GRACE-Follow-On) such as the typical striping patterns. The minimum configuration consists of at least two medium-Earth orbiters (MEOs) at 10000 km altitude or higher, and one low-Earth orbiter (LEO) at 350-400 km. The main instrument is a laser-based distance or distance change measurement system, which is placed at the LEO. The MEOs are equipped either with passive reflectors or transponders. In a numerical closed-loop simulation, it was demonstrated that this minimum configuration is in agreement with the threshold science requirements of 5 mm equivalent water height (EWH) accuracy at 400 km wavelength, and 10 cm EWH at 200 km. MOBILE provides promising potential future perspectives by linking the concept to existing space infrastructure such as Galileo next-generation, as future element of the Copernicus/Sentinel programme, and holds the potential of miniaturization even up to swarm configurations. As such MOBILE can be considered as a precursor and role model for a sustained mass transport observing system from space. Numéro de notice : A2019-635 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0006 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1515/jogs-2019-0006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95454
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 48 - 58[article]A global terrestrial reference frame from simulated VLBI and SLR data in view of GGOS / Susanne Glaser in Journal of geodesy, vol 91 n° 7 (July 2017)
[article]
Titre : A global terrestrial reference frame from simulated VLBI and SLR data in view of GGOS Type de document : Article/Communication Auteurs : Susanne Glaser, Auteur ; Rolf König, Auteur ; Dimitrios Ampatzidis, Auteur ; Tobias Nilsson, Auteur ; Robert Heinkelmann, Auteur ; Frank Flechtner, Auteur ; Harald Schuh, Auteur Année de publication : 2017 Article en page(s) : pp 723 - 733 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] données ITGB
[Termes IGN] données TLS (télémétrie)
[Termes IGN] Global Geodetic Observing System
[Termes IGN] paramètres d'orientation de la Terre
[Termes IGN] point de liaison (géodésie)
[Termes IGN] repère de référence
[Termes IGN] simulationRésumé : (Auteur) In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations. Numéro de notice : A2017-295 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1021-2 En ligne : http://doi.org/10.1007/s00190-017-1021-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85330
in Journal of geodesy > vol 91 n° 7 (July 2017) . - pp 723 - 733[article]GNSS navigation and positioning for the GEOHALO experiment in Italy / Kaifei He in GPS solutions, vol 20 n° 2 (April 2016)
[article]
Titre : GNSS navigation and positioning for the GEOHALO experiment in Italy Type de document : Article/Communication Auteurs : Kaifei He, Auteur ; Guochang Xu, Auteur ; Tianhe Xu, Auteur ; Frank Flechtner, Auteur Année de publication : 2016 Article en page(s) : pp 215 - 224 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] gravimétrie aérienne
[Termes IGN] Italie
[Termes IGN] positionnement cinématique
[Termes IGN] positionnement par GNSSRésumé : (Auteur) GEOHALO is a joint experiment of several German institutes for atmospheric research and earth observation where exploring airborne gravimetry over Italy using the High Altitude and LOng Range (HALO) aircraft data is one of the major goals. The kinematic positioning of the aircraft, on which all remote sensing instruments are located, by Global Navigation Satellite System (GNSS) is affected by the characteristics of long-distance, long-time duration, and high-platform dynamics which are a key factor for the success of the GEOHALO project. We outline the strategy and method of GNSS data processing which takes into account multiple GNSS systems (GPS and GLONASS), multiple static reference stations including stations from the International GNSS Service (IGS) and the EUropean REFerence network (EUREF), multiple GNSS-receiving equipments mounted on the kinematic platform, geometric relations between multiple antennas, and assumptions of similar characteristic of atmospheric effects within a small area above the aircraft. From this precondition, various data processing methods for kinematic positioning have been developed, applied and compared. It is shown that the proposed method based on multiple reference stations and multiple kinematic stations with a common atmospheric delay parameter can effectively improve the reliability and accuracy of GNSS kinematic positioning. Numéro de notice : A2016-612 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-014-0430-4 En ligne : http://dx.doi.org/10.1007/s10291-014-0430-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81811
in GPS solutions > vol 20 n° 2 (April 2016) . - pp 215 - 224[article]Bestimmung des Gesamtelektroneninhalts der Ionosphäre aus PRARE-Entfernungs- und Dopplerbeobachtungen / Frank Flechtner (2000)
Titre : Bestimmung des Gesamtelektroneninhalts der Ionosphäre aus PRARE-Entfernungs- und Dopplerbeobachtungen Titre original : [Détermination du contenu total en électrons de l'ionosphère à partir des observations de télémétrie doppler de PRARE] Type de document : Monographie Auteurs : Frank Flechtner, Auteur Editeur : Postdam : GeoForschungsZentrum Postdam Année de publication : 2000 Collection : Scientific technical reports num. 00/02 Importance : 135 p. Format : 21 x 30 cm Note générale : Bibliographie Langues : Allemand (ger) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] données PRARE
[Termes IGN] ionosphère
[Termes IGN] positionnement par PRARE
[Termes IGN] teneur totale en électronsIndex. décimale : 30.84 Applications de géodésie spatiale à l'atmosphère Résumé : (Auteur) Since many years, geodetic and geophysical quantities such as satellite orbits, ground station coordinates, Earth rotation parameters or Earth gravity field models are determined using radio or optical signals transmitted between ground stations and satellites. Beside many other disruptive factors, microwave observations are influenced to a great extent by the spatial and temporal highly variable behaviour of the Ionosphere. This leads usually to a change in signal travel time, but may also cause the complete loss of the signal. The fundamental parameter which describes the condition of the ionosphere is the total electron content (TEC). Because the ionosphere is a dispersive medium, TEC can be determined by measuring the travel time difference between two simultaneously transmitted signals of different frequency. Therefore, the German satellite tracking system PRARE (Precise Range And Range Rate Equipment) on ESA's remote sensing satellite ERS2 is also operated on two coherent frequencies. Unique with PRARE is the fact that the ionospheric parameters can alternatively be calculated from quasisimultaneous independent range and doppler measurements of the PRARE space segment. This method is called Differenced Range Versus Integrated Doppler (DRVID) and makes use of the different refraction index of code and phase measurements in refractive media such as the ionosphere. After a short introduction to the subject of this thesis the main characteristics of the PRARE system are presented, followed by the description of the properties of the Earth's atmospheric layers under special consideration of the refractivity and the spatial and temporal variations of the ionosphere. This more general part is completed by a survey of the presently used methods and models for the derivation of TEC. The data preprocessing of PRARE range and doppler measurements is the basis to derive the PRARE typical DRVID method. It is shown that this procedure is suitable to precisely derive the TEC and to detect multipath on PRARE range observations caused by the solar array of ERS-2. Different ideas for the necessary relative and absolute calibration of PRARE TEC values are discussed and carried out using two global ionospheric models, IRI95 and CODEGIM. The following comparison of simultaneous PRARE DRVID data with each other and with independent twofrequency TOPEX/POSEIDON altimeter observations shows their high reliability and quality. It is shown that especially under increasing solar activity and by further extension of the PRARE ground tracking network over the oceans the singlefrequency ERS-2 altimeter observations can be improved by means of PRARE TEC measurements. Finally, as an additional result of the experience gained during this work, some concrete suggestions for improvement of the PRARE system in case of operation on future satellite missions are presented. Numéro de notice : 15049 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Monographie Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=55053 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 15049-01 30.84 Livre Centre de documentation Géodésie Disponible