ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 133Paru le : 01/11/2017 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2017111 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2017112 | DEP-EAF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
081-2017113 | DEP-EXM | Revue | Saint-Mandé | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierMonitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015) / Ronald C. Estoque in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015) Type de document : Article/Communication Auteurs : Ronald C. Estoque, Auteur ; Yuji Murayama, Auteur Année de publication : 2017 Article en page(s) : pp 18 - 29 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aide à la décision
[Termes IGN] analyse diachronique
[Termes IGN] Asie du sud-est
[Termes IGN] climat tropical
[Termes IGN] couvert végétal
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat
[Termes IGN] montagne
[Termes IGN] Philippines
[Termes IGN] surface imperméable
[Termes IGN] surveillance de l'urbanisation
[Termes IGN] température de surface
[Termes IGN] urbanisme
[Termes IGN] villeRésumé : (Auteur) Since it was first described about two centuries ago and due to its adverse impacts on urban ecological environment and the overall livability of cities, the urban heat island (UHI) phenomenon has been, and still is, an important research topic across various fields of study. However, UHI studies on cities in mountain regions are still lacking. This study aims to contribute to this endeavor by monitoring and examining the formation of surface UHI (SUHI) in a tropical mountain city of Southeast Asia –Baguio City, the summer capital of the Philippines– using Landsat data (1987–2015). Based on mean surface temperature difference between impervious surface (IS) and green space (GS1), SUHI intensity (SUHII) in the study area increased from 2.7 °C in 1987 to 3.4 °C in 2015. Between an urban zone (>86% impervious) and a rural zone ( Numéro de notice : A2017-720 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.09.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.09.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88405
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 18 - 29[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment / Maryam R. Al Shehhi in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment Type de document : Article/Communication Auteurs : Maryam R. Al Shehhi, Auteur ; Imen Gherboidj, Auteur ; Hosni Gherida, Auteur Année de publication : 2017 Article en page(s) : pp 46 - 60 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] Arabie
[Termes IGN] chlorophylle
[Termes IGN] correction atmosphérique
[Termes IGN] couleur de l'océan
[Termes IGN] eau de mer
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] test de performance
[Termes IGN] turbidité océaniqueRésumé : (Auteur) This study presents a comprehensive assessment of the performance of the commonly used atmospheric correction models (NIR, SWIR, NIR-SWIR and FM) and ocean color products (OC3 and OC2) derived from MODIS images over the Arabian Gulf, Sea of Oman, and Arabian Sea. The considered atmospheric correction models have been used to derive MODIS normalized water-leaving radiances (nLw), which are compared to in situ water nLw(λ) data collected at different locations by Masdar Institute, United Arab of Emirates, and from AERONET-OC (the ocean color component of the Aerosol Robotic Network) database. From this comparison, the NIR model has been found to be the best performing model among the considered atmospheric correction models, which in turn shows disparity, especially at short wavelengths (400–500 nm) under high aerosol optical depth conditions (AOT (869) > 0.3) and over turbid waters. To reduce the error induced by these factors, a modified model taking into consideration the atmospheric and water turbidity conditions has been proposed. A turbidity index was used to identify the turbid water and a threshold of AOT (869) = 0.3 was used to identify the dusty atmosphere. Despite improved results in the MODIS nLw(λ) using the proposed approach, Chl-a models (OC3 and OC2) show low performance when compared to the in situ Chl-a measurements collected during several field campaigns organized by local, regional and international organizations. This discrepancy might be caused by the improper parametrization of these models or/and the improper selection of bands. Thus, an adaptive power fit algorithm (R2 = 0.95) has been proposed to improve the estimation of Chl-a concentration from 0.07 to 10 mg/m3 by using a new blue/red MODIS band ratio of (443,488)/645 instead of the default band ratio used for OC3(443,488)/547. The selection of this new band ratio (443,488)/645 has been based on using band 645 nm which has been found to represent both water turbidity and algal absorption. Numéro de notice : A2017-721 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.09.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.09.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88406
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 46 - 60[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt The Naïve Overfitting Index Selection (NOIS): A new method to optimize model complexity for hyperspectral data / Alby D. Rocha in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : The Naïve Overfitting Index Selection (NOIS): A new method to optimize model complexity for hyperspectral data Type de document : Article/Communication Auteurs : Alby D. Rocha, Auteur ; Thomas A. Groen, Auteur ; Andrew K. Skidmore, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 61 - 74 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] complexité
[Termes IGN] image hyperspectrale
[Termes IGN] méthode robuste
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] précision
[Termes IGN] régression
[Termes IGN] validation des donnéesRésumé : (Auteur) The growing number of narrow spectral bands in hyperspectral remote sensing improves the capacity to describe and predict biological processes in ecosystems. But it also poses a challenge to fit empirical models based on such high dimensional data, which often contain correlated and noisy predictors. As sample sizes, to train and validate empirical models, seem not to be increasing at the same rate, overfitting has become a serious concern. Overly complex models lead to overfitting by capturing more than the underlying relationship, and also through fitting random noise in the data. Many regression techniques claim to overcome these problems by using different strategies to constrain complexity, such as limiting the number of terms in the model, by creating latent variables or by shrinking parameter coefficients. This paper is proposing a new method, named Naïve Overfitting Index Selection (NOIS), which makes use of artificially generated spectra, to quantify the relative model overfitting and to select an optimal model complexity supported by the data. The robustness of this new method is assessed by comparing it to a traditional model selection based on cross-validation. The optimal model complexity is determined for seven different regression techniques, such as partial least squares regression, support vector machine, artificial neural network and tree-based regressions using five hyperspectral datasets. The NOIS method selects less complex models, which present accuracies similar to the cross-validation method. The NOIS method reduces the chance of overfitting, thereby avoiding models that present accurate predictions that are only valid for the data used, and too complex to make inferences about the underlying process. Numéro de notice : A2017-722 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.09.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.09.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88407
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 61 - 74[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Remote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Remote sensing of species diversity using Landsat 8 spectral variables Type de document : Article/Communication Auteurs : Sabelo Madonsela, Auteur ; Moses Azong Cho, Auteur ; Abel Ramoleo, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2017 Article en page(s) : pp 116 - 127 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique du sud (état)
[Termes IGN] analyse en composantes principales
[Termes IGN] bande infrarouge
[Termes IGN] biodiversité
[Termes IGN] espèce végétale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] indice de diversité
[Termes IGN] indice de végétation
[Termes IGN] matrice de co-occurrence
[Termes IGN] régression linéaire
[Termes IGN] savaneRésumé : (Auteur) The application of remote sensing in biodiversity estimation has largely relied on the Normalized Difference Vegetation Index (NDVI). The NDVI exploits spectral information from red and near infrared bands of Landsat images and it does not consider canopy background conditions hence it is affected by soil brightness which lowers its sensitivity to vegetation. As such NDVI may be insufficient in explaining tree species diversity. Meanwhile, the Landsat program also collects essential spectral information in the shortwave infrared (SWIR) region which is related to plant properties. The study was intended to: (i) explore the utility of spectral information across Landsat-8 spectrum using the Principal Component Analysis (PCA) and estimate alpha diversity (α-diversity) in the savannah woodland in southern Africa, and (ii) define the species diversity index (Shannon (H′), Simpson (D2) and species richness (S) – defined as number of species in a community) that best relates to spectral variability on the Landsat-8 Operational Land Imager dataset. We designed 90 m × 90 m field plots (n = 71) and identified all trees with a diameter at breast height (DbH) above 10 cm. H′, D2 and S were used to quantify tree species diversity within each plot and the corresponding spectral information on all Landsat-8 bands were extracted from each field plot. A stepwise linear regression was applied to determine the relationship between species diversity indices (H′, D2 and S) and Principal Components (PCs), vegetation indices and Gray Level Co-occurrence Matrix (GLCM) texture layers with calibration (n = 46) and test (n = 23) datasets. The results of regression analysis showed that the Simple Ratio Index derivative had a higher relationship with H′, D2 and S (r2 = 0.36; r2 = 0.41; r2 = 0.24 respectively) compared to NDVI, EVI, SAVI or their derivatives. Moreover the Landsat-8 derived PCs also had a higher relationship with H′ and D2 (r2 of 0.36 and 0.35 respectively) than the frequently used NDVI, and this was attributed to the utilization of the entire spectral content of Landsat-8 data. Our results indicate that: (i) the measurement scales of vegetation indices impact their sensitivity to vegetation characteristics and their ability to explain tree species diversity; (ii) principal components enhance the utility of Landsat-8 spectral data for estimating tree species diversity and (iii) species diversity indices that consider both species richness and abundance (H′ and D2) relates better with Landsat-8 spectral variables. Numéro de notice : A2017-723 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88408
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 116 - 127[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Tree species classification using within crown localization of waveform LiDAR attributes / Rosmarie Blomley in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Tree species classification using within crown localization of waveform LiDAR attributes Type de document : Article/Communication Auteurs : Rosmarie Blomley, Auteur ; Aarne Hovi, Auteur ; Martin Weinmann, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 142 - 156 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse multiéchelle
[Termes IGN] Betula pendula
[Termes IGN] betula pubescens
[Termes IGN] croissance des arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espèce végétale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt boréale
[Termes IGN] Norvège
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] rotation d'objetRésumé : (Auteur) Since forest planning is increasingly taking an ecological, diversity-oriented perspective into account, remote sensing technologies are becoming ever more important in assessing existing resources with reduced manual effort. While the light detection and ranging (LiDAR) technology provides a good basis for predictions of tree height and biomass, tree species identification based on this type of data is particularly challenging in structurally heterogeneous forests. In this paper, we analyse existing approaches with respect to the geometrical scale of feature extraction (whole tree, within crown partitions or within laser footprint) and conclude that currently features are always extracted separately from the different scales. Since multi-scale approaches however have proven successful in other applications, we aim to utilize the within-tree-crown distribution of within-footprint signal characteristics as additional features. To do so, a spin image algorithm, originally devised for the extraction of 3D surface features in object recognition, is adapted. This algorithm relies on spinning an image plane around a defined axis, e.g. the tree stem, collecting the number of LiDAR returns or mean values of returns attributes per pixel as respective values. Based on this representation, spin image features are extracted that comprise only those components of highest variability among a given set of library trees. The relative performance and the combined improvement of these spin image features with respect to non-spatial statistical metrics of the waveform (WF) attributes are evaluated for the tree species classification of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Silver/Downy birch (Betula pendula Roth/Betula pubescens Ehrh.) in a boreal forest environment. This evaluation is performed for two WF LiDAR datasets that differ in footprint size, pulse density at ground, laser wavelength and pulse width. Furthermore, we evaluate the robustness of the proposed method with respect to internal parameters and tree size. The results reveal, that the consideration of the crown-internal distribution of within-footprint signal characteristics captured in spin image features improves the classification results in nearly all test cases Numéro de notice : A2017-724 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.08.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.08.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88409
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 142 - 156[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines / Jinshan Cao in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines Type de document : Article/Communication Auteurs : Jinshan Cao, Auteur ; Jianhong Fu, Auteur ; Xiuxiao Yuan, Auteur ; Jianya Gong, Auteur Année de publication : 2017 Article en page(s) : pp 174 - 185 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] compensation non linéaire
[Termes IGN] correction géométrique
[Termes IGN] erreur systématique
[Termes IGN] image ZiYuan-3
[Termes IGN] modèle par fonctions rationnelles
[Termes IGN] orientation du capteur
[Termes IGN] point d'appui
[Termes IGN] résidu
[Termes IGN] spline cubique
[Termes IGN] transformation affineRésumé : (Auteur) Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1.093 pixels, which were respectively 42.1%, 48.3%, and 54.8% better than those achieved before the nonlinear bias compensation. Numéro de notice : A2017-725 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88410
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 174 - 185[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Mapping the height and spatial cover of features beneath the forest canopy at small-scales using airborne scanning discrete return Lidar / Matthew Sumnall in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Mapping the height and spatial cover of features beneath the forest canopy at small-scales using airborne scanning discrete return Lidar Type de document : Article/Communication Auteurs : Matthew Sumnall, Auteur ; Thomas R. Fox, Auteur ; Randolph H. Wynne, Auteur ; Valerie A. Thomas, Auteur Année de publication : 2017 Article en page(s) : pp 186 - 200 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] couvert forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation statistique
[Termes IGN] Etats-Unis
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar à retour d'onde complète
[Termes IGN] Pinophyta
[Termes IGN] Pinus taeda
[Termes IGN] sous-boisRésumé : (Auteur) The objective of the current study was to develop methods for estimating the height and horizontal coverage of the forest understorey using airborne Lidar data in three managed pine plantation forest typical of the south eastern USA. The current project demonstrates a two-step approach applied automatically across a given study site extent. The first operation divided the study site extent into a regularly spaced grid (25 × 25 m) and identified the potential height range of the main Loblolly pine canopy layer for each grid-cell through aggregating Lidar return height measurements into a ‘stack’ of vertical height bins describing the frequency of returns by height. Once height bins were created, the resulting vertical distributions were smoothed with a regression curve line function and the main canopy vertical layer was identified through the detection of local maxima and minima. The second operation sub-divided the 25 × 25 m grid-cell into 1 × 1 m horizontal grid, for which height-bin stacks were created for each cell. Vertical features below the main canopy were then identified at this scale in the same manner as in the previous step, and classified as understorey features if they were lower in height than the 25 × 25 m estimate of the main canopy layer. The heights of the tallest understorey and sub-canopy layers were kept, and used to produce a rasterized map of the understorey layer height at the 1 × 1 m scale. Lidar derived estimates of the 25 × 25 m lowest vertical extent of the coniferous canopy correlated highly with field data (R2 0.87; RMSE 2.1 m). Estimates of understorey horizontal cover ranged from R2 0.80 to 0.90 (RMSE 6.6–11.7%), and maximum understorey layer height ranged from R2 0.69 to 0.80 (RMSE 1.6–3.4 m) for the three study sites. The automated method deployed within the current study proved sufficient in determining the presence and absence of vegetation and artificial structures within the understorey portion of the current forest context, in addition to height and horizontal cover to a reasonable accuracy. Issues were encountered within older stands (e.g. more than 30 years old) where understorey deciduous vegetation layers intersected with the coniferous canopy layer, resulting in an underestimation of sub-dominant heights. Numéro de notice : A2017-726 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88411
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 186 - 200[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt