ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 134Paru le : 01/12/2017 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2017121 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2017122 | DEP-EAF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
081-2017123 | DEP-EXM | Revue | Saint-Mandé | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierLarge-scale block adjustment without use of ground control points based on the compensation of geometric calibration for ZY-3 images / Yang Bo in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : Large-scale block adjustment without use of ground control points based on the compensation of geometric calibration for ZY-3 images Type de document : Article/Communication Auteurs : Yang Bo, Auteur ; Wang Mi, Auteur ; Wen Xu, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1 - 14 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] angle de visée
[Termes IGN] compensation par bloc
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] erreur systématique
[Termes IGN] étalonnage géométrique
[Termes IGN] image ZiYuan-3
[Termes IGN] méthode du gradient conjugué
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] point d'appui virtuel
[Termes IGN] points homologues
[Termes IGN] précision géométrique (imagerie)Résumé : (Auteur) The potential of large-scale block adjustment (BA) without ground control points (GCPs) has long been a concern among photogrammetric researchers, which is of effective guiding significance for global mapping. However, significant problems with the accuracy and efficiency of this method remain to be solved. In this study, we analyzed the effects of geometric errors on BA, and then developed a step-wise BA method to conduct integrated processing of large-scale ZY-3 satellite images without GCPs. We first pre-processed the BA data, by adopting a geometric calibration (GC) method based on the viewing-angle model to compensate for systematic errors, such that the BA input images were of good initial geometric quality. The second step was integrated BA without GCPs, in which a series of technical methods were used to solve bottleneck problems and ensure accuracy and efficiency. The BA model, based on virtual control points (VCPs), was constructed to address the rank deficiency problem caused by lack of absolute constraints. We then developed a parallel matching strategy to improve the efficiency of tie points (TPs) matching, and adopted a three-array data structure based on sparsity to relieve the storage and calculation burden of the high-order modified equation. Finally, we used the conjugate gradient method to improve the speed of solving the high-order equations. To evaluate the feasibility of the presented large-scale BA method, we conducted three experiments on real data collected by the ZY-3 satellite. The experimental results indicate that the presented method can effectively improve the geometric accuracies of ZY-3 satellite images. This study demonstrates the feasibility of large-scale mapping without GCPs. Numéro de notice : A2017-727 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88413
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 1 - 14[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game / Dawei Zai in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game Type de document : Article/Communication Auteurs : Dawei Zai, Auteur ; Jonathan Li, Auteur ; Yulan Guo, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 15 - 29 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] enregistrement de données
[Termes IGN] matrice de covariance
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] théorie des jeuxRésumé : (Auteur) It is challenging to automatically register TLS point clouds with noise, outliers and varying overlap. In this paper, we propose a new method for pairwise registration of TLS point clouds. We first generate covariance matrix descriptors with an adaptive neighborhood size from point clouds to find candidate correspondences, we then construct a non-cooperative game to isolate mutual compatible correspondences, which are considered as true positives. The method was tested on three models acquired by two different TLS systems. Experimental results demonstrate that our proposed adaptive covariance (ACOV) descriptor is invariant to rigid transformation and robust to noise and varying resolutions. The average registration errors achieved on three models are 0.46 cm, 0.32 cm and 1.73 cm, respectively. The computational times cost on these models are about 288 s, 184 s and 903 s, respectively. Besides, our registration framework using ACOV descriptors and a game theoretic method is superior to the state-of-the-art methods in terms of both registration error and computational time. The experiment on a large outdoor scene further demonstrates the feasibility and effectiveness of our proposed pairwise registration framework. Numéro de notice : A2017-729 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88426
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 15 - 29[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery / Jose Alan A. Castillo in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery Type de document : Article/Communication Auteurs : Jose Alan A. Castillo, Auteur ; Armando A. Apan, Auteur ; Tek N. Maraseni, Auteur ; Severino G. Salmo, Auteur Année de publication : 2017 Article en page(s) : pp 70 - 85 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] biomasse aérienne
[Termes IGN] carte d'utilisation du sol
[Termes IGN] déboisement
[Termes IGN] estimation statistique
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] mangrove
[Termes IGN] modèle de simulation
[Termes IGN] Philippines
[Termes IGN] régression linéaire
[Termes IGN] rétrodiffusion
[Termes IGN] variable biophysique (végétation)Résumé : (Auteur) The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82–0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8–28.5 Mg ha−1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement non-forest land uses, especially with the inclusion of elevation data. The study demonstrates encouraging results in biomass mapping of mangroves and other coastal land uses in the tropics using the freely accessible and relatively high-resolution Sentinel imagery. Numéro de notice : A2017-730 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.016 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88428
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 70 - 85[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling : A case study in environmental remote sensing / Jing Gao in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling : A case study in environmental remote sensing Type de document : Article/Communication Auteurs : Jing Gao, Auteur ; James E. Burt, Auteur Année de publication : 2017 Article en page(s) : pp 110 - 121 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage automatique
[Termes IGN] classification pixellaire
[Termes IGN] décomposition
[Termes IGN] données environnementales
[Termes IGN] erreur absolue
[Termes IGN] erreur systématique
[Termes IGN] image Landsat
[Termes IGN] précision de l'estimation
[Termes IGN] surface imperméable
[Termes IGN] test de performance
[Termes IGN] varianceRésumé : (Auteur) This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0–100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation – training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD’s strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments. Numéro de notice : A2017-731 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88429
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 110 - 121[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – A case study in Wild Duck Lake Wetland, Beijing, China / Ran Jing in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – A case study in Wild Duck Lake Wetland, Beijing, China Type de document : Article/Communication Auteurs : Ran Jing, Auteur ; Zhaoning Gong, Auteur ; Wenji Zhao, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 122 - 134 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] arbre de décision
[Termes IGN] biomasse
[Termes IGN] croissance végétale
[Termes IGN] drone
[Termes IGN] image aérienne
[Termes IGN] indice de végétation
[Termes IGN] lac
[Termes IGN] macrophyte
[Termes IGN] modèle de régression
[Termes IGN] orthoimage
[Termes IGN] Pékin (Chine)
[Termes IGN] régression linéaire
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] zone humideRésumé : (Auteur) Above-bottom biomass (ABB) is considered as an important parameter for measuring the growth status of aquatic plants, and is of great significance for assessing health status of wetland ecosystems. In this study, Structure from Motion (SfM) technique was used to rebuild the study area with high overlapped images acquired by an unmanned aerial vehicle (UAV). We generated orthoimages and SfM dense point cloud data, from which vegetation indices (VIs) and SfM point cloud variables including average height (HAVG), standard deviation of height (HSD) and coefficient of variation of height (HCV) were extracted. These VIs and SfM point cloud variables could effectively characterize the growth status of aquatic plants, and thus they could be used to develop a simple linear regression model (SLR) and a stepwise linear regression model (SWL) with field measured ABB samples of aquatic plants. We also utilized a decision tree method to discriminate different types of aquatic plants. The experimental results indicated that (1) the SfM technique could effectively process high overlapped UAV images and thus be suitable for the reconstruction of fine texture feature of aquatic plant canopy structure; and (2) an SWL model based on point cloud variables: HAVG, HSD, HCV and two VIs: NGRDI, ExGR as independent variables has produced the best predictive result of ABB of aquatic plants in the study area, with a coefficient of determination of 0.84 and a relative root mean square error of 7.13%. In this analysis, a novel method for the quantitative inversion of a growth parameter (i.e., ABB) of aquatic plants in wetlands was demonstrated. Numéro de notice : A2017-732 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88431
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 122 - 134[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt DEM generation from contours and a low-resolution DEM / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : DEM generation from contours and a low-resolution DEM Type de document : Article/Communication Auteurs : Xinghua Li, Auteur ; Huanfeng Shen, Auteur ; Ruitao Feng, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 135 - 147 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] détection de contours
[Termes IGN] krigeage
[Termes IGN] MNS ASTER
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] programmation par contraintes
[Termes IGN] régularisation
[Termes IGN] représentation discrèteRésumé : (Auteur) A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates DEM generation from contours. Since contours are usually sparsely distributed and closely related in space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial information, another lower spatial resolution DEM from the same geographical area is introduced. In this way, the sparse representation implements the spatial constraints in the contours and extracts the complementary information from the auxiliary DEM. Furthermore, the proposed method integrates the advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model (GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be successfully used for DEM generation from contours. Numéro de notice : A2017-735 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.09.014 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.09.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88432
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 135 - 147[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt