IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 56 n° 2Paru le : 01/02/2018 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : LRAGE : learning latent relationships with adaptive graph embedding for aerial scene classification Type de document : Article/Communication Auteurs : Yuebin Wang, Auteur ; Liqiang Zhang, Auteur ; Xiaohua Tong, Auteur ; Feiping Nie, Auteur ; Haiyang Huang, Auteur ; Jie Mei, Auteur Année de publication : 2018 Article en page(s) : pp 621 - 634 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification semi-dirigée
[Termes IGN] graphe
[Termes IGN] image aérienne
[Termes IGN] programmation par contraintes
[Termes IGN] régression linéaire
[Termes IGN] scèneRésumé : (Auteur) The performance of scene classification relies heavily on the spatial and structural features that are extracted from high spatial resolution remote-sensing images. Existing approaches, however, are limited in adequately exploiting latent relationships between scene images. Aiming to decrease the distances between intraclass images and increase the distances between interclass images, we propose a latent relationship learning framework that integrates an adaptive graph with the constraints of the feature space and label propagation for high-resolution aerial image classification. To describe the latent relationships among scene images in the framework, we construct an adaptive graph that is embedded into the constrained joint space for features and labels. To remove redundant information and improve the computational efficiency, subspace learning is introduced to assist in the latent relationship learning. To address out-of-sample data, linear regression is adopted to project the semisupervised classification results onto a linear classifier. Learning efficiency is improved by minimizing the objective function via the linearized alternating direction method with an adaptive penalty. We test our method on three widely used aerial scene image data sets. The experimental results demonstrate the superior performance of our method over the state-of-the-art algorithms in aerial scene image classification. Numéro de notice : A2018-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2752217 Date de publication en ligne : 24/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2752217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89854
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 621 - 634[article]Fine-grained object recognition and zero-shot learning in remote sensing imagery / Gencer Sumbul in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : Fine-grained object recognition and zero-shot learning in remote sensing imagery Type de document : Article/Communication Auteurs : Gencer Sumbul, Auteur ; Ramazan Gokberk Cinbis, Auteur ; Selim Aksoy, Auteur Année de publication : 2018 Article en page(s) : pp 770 - 779 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre urbain
[Termes IGN] image numérique
[Termes IGN] inférence
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Fine-grained object recognition that aims to identify the type of an object among a large number of subcategories is an emerging application with the increasing resolution that exposes new details in image data. Traditional fully supervised algorithms fail to handle this problem where there is low between-class variance and high within-class variance for the classes of interest with small sample sizes. We study an even more extreme scenario named zero-shot learning (ZSL) in which no training example exists for some of the classes. ZSL aims to build a recognition model for new unseen categories by relating them to seen classes that were previously learned. We establish this relation by learning a compatibility function between image features extracted via a convolutional neural network and auxiliary information that describes the semantics of the classes of interest by using training samples from the seen classes. Then, we show how knowledge transfer can be performed for the unseen classes by maximizing this function during inference. We introduce a new data set that contains 40 different types of street trees in 1-ft spatial resolution aerial data, and evaluate the performance of this model with manually annotated attributes, a natural language model, and a scientific taxonomy as auxiliary information. The experiments show that the proposed model achieves 14.3% recognition accuracy for the classes with no training examples, which is significantly better than a random guess accuracy of 6.3% for 16 test classes, and three other ZSL algorithms. Numéro de notice : A2018-190 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2754648 Date de publication en ligne : 18/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2754648 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89855
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 770 - 779[article]Multisource remote sensing data classification based on convolutional neural network / Xiaodong Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : Multisource remote sensing data classification based on convolutional neural network Type de document : Article/Communication Auteurs : Xiaodong Xu, Auteur ; Wei Li, Auteur ; Qiong Ran, Auteur ; Qian Du, Auteur ; Lianru Gao, Auteur ; Bing Zhang, Auteur Année de publication : 2018 Article en page(s) : pp 937 - 949 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) As a list of remotely sensed data sources is available, how to efficiently exploit useful information from multisource data for better Earth observation becomes an interesting but challenging problem. In this paper, the classification fusion of hyperspectral imagery (HSI) and data from other multiple sensors, such as light detection and ranging (LiDAR) data, is investigated with the state-of-the-art deep learning, named the two-branch convolution neural network (CNN). More specific, a two-tunnel CNN framework is first developed to extract spectral-spatial features from HSI; besides, the CNN with cascade block is designed for feature extraction from LiDAR or high-resolution visual image. In the feature fusion stage, the spatial and spectral features of HSI are first integrated in a dual-tunnel branch, and then combined with other data features extracted from a cascade network. Experimental results based on several multisource data demonstrate the proposed two-branch CNN that can achieve more excellent classification performance than some existing methods. Numéro de notice : A2018-191 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2756851 Date de publication en ligne : 16/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2756851 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89856
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 937 - 949[article]Large-scale remote sensing image retrieval by deep hashing neural networks / Yansheng Li in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : Large-scale remote sensing image retrieval by deep hashing neural networks Type de document : Article/Communication Auteurs : Yansheng Li, Auteur ; Yongjun Zhang, Auteur ; Xin Huang, Auteur ; Hu Zhu, Auteur ; Jiayi Ma, Auteur Année de publication : 2018 Article en page(s) : pp 950 - 965 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal
[Termes IGN] données d'entrainement (apprentissage automatique)Résumé : (Auteur) As one of the most challenging tasks of remote sensing big data mining, large-scale remote sensing image retrieval has attracted increasing attention from researchers. Existing large-scale remote sensing image retrieval approaches are generally implemented by using hashing learning methods, which take handcrafted features as inputs and map the high-dimensional feature vector to the low-dimensional binary feature vector to reduce feature-searching complexity levels. As a means of applying the merits of deep learning, this paper proposes a novel large-scale remote sensing image retrieval approach based on deep hashing neural networks (DHNNs). More specifically, DHNNs are composed of deep feature learning neural networks and hashing learning neural networks and can be optimized in an end-to-end manner. Rather than requiring to dedicate expertise and effort to the design of feature descriptors, we can automatically learn good feature extraction operations and feature hashing mapping under the supervision of labeled samples. To broaden the application field, DHNNs are evaluated under two representative remote sensing cases: scarce and sufficient labeled samples. To make up for a lack of labeled samples, DHNNs can be trained via transfer learning for the former case. For the latter case, DHNNs can be trained via supervised learning from scratch with the aid of a vast number of labeled samples. Extensive experiments on one public remote sensing image data set with a limited number of labeled samples and on another public data set with plenty of labeled samples show that the proposed remote sensing image retrieval approach based on DHNNs can remarkably outperform state-of-the-art methods under both of the examined conditions. Numéro de notice : A2018-192 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2756911 Date de publication en ligne : 13/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2756911 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89857
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 950 - 965[article]Robust interpolation of DEMs from lidar-derived elevation data / Chuanfa Chen in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : Robust interpolation of DEMs from lidar-derived elevation data Type de document : Article/Communication Auteurs : Chuanfa Chen, Auteur ; Yanyan Li, Auteur ; Na Zhao, Auteur ; Changqing Yan, Auteur Année de publication : 2018 Article en page(s) : pp 1059 - 1068 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fonction spline
[Termes IGN] interpolation
[Termes IGN] méthode robuste
[Termes IGN] modèle numérique de surfaceRésumé : (Auteur) Light detection and ranging (lidar)-derived elevation data are commonly subjected to outliers due to the boundaries of occlusions, physical imperfections of sensors, and surface reflectance. Outliers have a serious negative effect on the accuracy of digital elevation models (DEMs). To decrease the impact of outliers on DEM construction, we propose a robust interpolation algorithm of multiquadric (MQ) based on a regularized least absolute deviation (LAD) technique. The objective function of the proposed method includes a regularization-based smoothing term and an LAD-based fitting term, respectively, used to smooth noisy samples and resist the influence of outliers. To solve the objective function of the proposed method, we develop a simple scheme based on the split-Bregman iteration algorithm. Results from simulated data sets indicate that when sample points are noisy or contaminated by outliers, the proposed method is more accurate than the classical MQ and two recently developed robust algorithms of MQ for surface modeling. Real-world examples of interpolating 1 private and 11 publicly available airborne lidar-derived data sets demonstrate that the proposed method averagely produces better results than two promising interpolation methods including regularized spline with tension (RST) and gridded data-based robust thin plate spline (RTPS). Specifically, the image of RTPS is too smooth to retain terrain details. Although RST can keep subtle terrain features, it is distorted by some misclassified object points (i.e., pseudooutliers). The proposed method obtains a good tradeoff between resisting the effect of outliers and preserving terrain features. Overall, the proposed method can be considered as an alternative for interpolating lidar-derived data sets potentially including outliers. Numéro de notice : A2018-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2758795 Date de publication en ligne : 17/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2758795 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89858
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 1059 - 1068[article]