ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 7 n° 3Paru le : 01/03/2018 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierIncreasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data / Giles M. Foody in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Increasing the accuracy of crowdsourced information on land cover via a voting procedure weighted by information inferred from the contributed data Type de document : Article/Communication Auteurs : Giles M. Foody, Auteur ; Linda M. See, Auteur ; Steffen Fritz, Auteur ; Inian Moorthy, Auteur ; Christoph Perger, Auteur ; Christian Schill, Auteur ; Doreen S. Boyd, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] cartographie collaborative
[Termes IGN] données localisées des bénévoles
[Termes IGN] modèle de classe latente
[Termes IGN] occupation du sol
[Termes IGN] pondération
[Termes IGN] précision de la classificationRésumé : (Auteur) Simple consensus methods are often used in crowdsourcing studies to label cases when data are provided by multiple contributors. A basic majority vote rule is often used. This approach weights the contributions from each contributor equally but the contributors may vary in the accuracy with which they can label cases. Here, the potential to increase the accuracy of crowdsourced data on land cover identified from satellite remote sensor images through the use of weighted voting strategies is explored. Critically, the information used to weight contributions based on the accuracy with which a contributor labels cases of a class and the relative abundance of class are inferred entirely from the contributed data only via a latent class analysis. The results show that consensus approaches do yield a classification that is more accurate than that achieved by any individual contributor. Here, the most accurate individual could classify the data with an accuracy of 73.91% while a basic consensus label derived from the data provided by all seven volunteers contributing data was 76.58%. More importantly, the results show that weighting contributions can lead to a statistically significant increase in the overall accuracy to 80.60% by ignoring the contributions from the volunteer adjudged to be the least accurate in labelling. Numéro de notice : A2018-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030080 Date de publication en ligne : 25/02/2018 En ligne : https://doi.org/10.3390/ijgi7030080 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89505
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Similarity measurement of metadata of geospatial data : an artificial neural network approach / Zugang Chen in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Similarity measurement of metadata of geospatial data : an artificial neural network approach Type de document : Article/Communication Auteurs : Zugang Chen, Auteur ; Jia Song, Auteur ; Yaping Yang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] données localisées
[Termes IGN] métadonnées
[Termes IGN] métadonnées géographiques
[Termes IGN] réseau neuronal artificiel
[Termes IGN] similitudeRésumé : (Auteur) To help users discover the most relevant spatial datasets in the ever-growing global spatial data infrastructures (SDIs), a number of similarity measures of geospatial data based on metadata have been proposed. Researchers have assessed the similarity of geospatial data according to one or more characteristics of the geospatial data. They created different similarity algorithms for each of the selected characteristics and then combined these elementary similarities to the overall similarity of the geospatial data. The existing combination methods are mainly linear and may not be the most accurate. This paper reports our experiences in attempting to learn the optimal non-linear similarity integration functions, from the knowledge of experts, using an artificial neural network. First, a multiple-layer feed forward neural network (MLFFN) was created. Then, the intrinsic characteristics were used to represent the metadata of geospatial data and the similarity algorithms for each of the intrinsic characteristics were built. The training and evaluation data of MLFFN were derived from the knowledge of domain experts. Finally, the MLFFN was trained, evaluated, and compared with traditional linear combination methods, which was mainly a weighted sum. The results show that our method outperformed the existing methods in terms of precision. Moreover, we found that the combination of elementary similarities of experts to the overall similarity of geospatial data was not linear. Numéro de notice : A2018-094 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030090 En ligne : https://doi.org/10.3390/ijgi7030090 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89506
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Generative street addresses from satellite imagery / İlke Demir in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Generative street addresses from satellite imagery Type de document : Article/Communication Auteurs : İlke Demir, Auteur ; Forest Hughes, Auteur ; Aman Raj, Auteur ; Kaunil Dhruv, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] adresse postale
[Termes IGN] apprentissage profond
[Termes IGN] extraction du réseau routier
[Termes IGN] graphe
[Termes IGN] image satellite
[Termes IGN] routeRésumé : (Auteur) We describe our automatic generative algorithm to create street addresses from satellite images by learning and labeling roads, regions, and address cells. Currently, 75% of the world’s roads lack adequate street addressing systems. Recent geocoding initiatives tend to convert pure latitude and longitude information into a memorable form for unknown areas. However, settlements are identified by streets, and such addressing schemes are not coherent with the road topology. Instead, we propose a generative address design that maps the globe in accordance with streets. Our algorithm starts with extracting roads from satellite imagery by utilizing deep learning. Then, it uniquely labels the regions, roads, and structures using some graph- and proximity-based algorithms. We also extend our addressing scheme to (i) cover inaccessible areas following similar design principles; (ii) be inclusive and flexible for changes on the ground; and (iii) lead as a pioneer for a unified street-based global geodatabase. We present our results on an example of a developed city and multiple undeveloped cities. We also compare productivity on the basis of current ad hoc and new complete addresses. We conclude by contrasting our generative addresses to current industrial and open solutions. Numéro de notice : A2018-095 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030084 En ligne : https://doi.org/10.3390/ijgi7030084 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89507
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Assessment of multiple GNSS Real-Time SSR products from different analysis centers / Zhiyu Wang in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Assessment of multiple GNSS Real-Time SSR products from different analysis centers Type de document : Article/Communication Auteurs : Zhiyu Wang, Auteur ; Zishen Li, Auteur ; Liang Wang, Auteur ; Xiaoming Wang, Auteur ; Hong Yuan, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] constellation BeiDou
[Termes IGN] constellation Galileo
[Termes IGN] constellation GLONASS
[Termes IGN] constellation GPS
[Termes IGN] positionnement ponctuel précisRésumé : (Auteur) The real-time State Space Representation (SSR) product of the GNSS (Global Navigation Satellite System) orbit and clock is one of the most essential corrections for real-time precise point positioning (PPP). In this work, the performance of current SSR products from eight analysis centers were assessed by comparing it with the final product and the accuracy of real-time PPP. Numerical results showed that (1) the accuracies of the GPS SSR product were better than 8 cm for the satellite orbit and 0.3 ns for the satellite clock; (2) the accuracies of the GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) SSR product were better than 10 cm for orbit RMS (Root Mean Square) and 0.6 ns for clock STD (Standard Deviation); and (3) the accuracies of the BDS (BeiDou Navigation Satellite System) and Galileo SSR products from CLK93 were about 14.54 and 4.42 cm for the orbit RMS and 0.32 and 0.18 ns for the clock STD, respectively. The simulated kinematic PPP results obtained using the SSR products from CLK93 and CLK51 performed better than those using other SSR products; and the accuracy of PPP based on all products was better than 6 and 10 cm in the horizontal and vertical directions, respectively. The real-time kinematic PPP experiment carried out in Beijing, Tianjin, and Shijiazhuang, China indicated that the SSR product CLK93 from Centre National d’Etudes Spatiales (CNES) had a better performance than CAS01. Moreover, the PPP with GPS + BDS dual systems had a higher accuracy than those with only a GPS single system. Numéro de notice : A2018-096 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030085 En ligne : https://doi.org/10.3390/ijgi7030085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89508
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Geographic information retrieval method for geography mark-up language data / Caili Fang in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Geographic information retrieval method for geography mark-up language data Type de document : Article/Communication Auteurs : Caili Fang, Auteur ; Shuliang Zhang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] code source libre
[Termes IGN] GML
[Termes IGN] recherche d'information géographiqueRésumé : (Auteur) Geography Mark-up Language (GML) is the geographic information coding specification based on the Extensible Markup Language (XML) technology, which was developed by the Open GIS Consortium (OGC). GML expresses spatial and non-spatial attributes of geographic objects. Retrievals for traditional XML and geographic information have some limitations with respect to GML data, such as mismatching of the retrieval model, a single search form, and low retrieval quality. Based on analysis of the attributes, spatial relations, and structural features of GML data, this paper takes GML data elements as retrieval units and summarizes the GML retrieval mode. Then, the GML retrieval mode is constructed and formalized. On this basis, the GML Geographic Information Retrieval (GML_GIR) model is presented. The method implements the construction of a comprehensive index and the relative ordering of retrieval results by means of Lucene, an open-source full-text retrieval framework, and its components. For different features of GML data, corresponding relevance calculations are proposed. This study designs several different retrieval forms for GML data and simplifies the process of user information acquisitions. It provides reference methods for exploring geographical information retrieval based on semi-structured data represented by GML. Experimental results showed the efficiency and accuracy of the retrieval method. Numéro de notice : A2018-097 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030089 En ligne : https://doi.org/10.3390/ijgi7030089 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89509
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]A novel approach to site selection: collaborative multi-criteria decision making through geo-social network (case study: public parking) / Zeinab Neisani Samani in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : A novel approach to site selection: collaborative multi-criteria decision making through geo-social network (case study: public parking) Type de document : Article/Communication Auteurs : Zeinab Neisani Samani, Auteur ; Mohammad Karimi, Auteur ; Ali Asghar Alesheikh, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aide à la décision
[Termes IGN] analyse multicritère
[Termes IGN] parking
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] réseau social
[Termes IGN] TéhéranRésumé : (Auteur) There are many potential factors that are involved in the decision making process of site selection, which makes it a challenging issue. This paper addresses the collaborative decision making concept through a geo-social network to predict site selection for public parking in Tehran, Iran. The presented approach utilized the analytic hierarchy process (AHP) as a multi-criteria decision method (MCDM) for weighting the criteria, which was completed in two stages; once by 50 experts, and then by three different levels of users, including 50 experts, 25 urban managers, and 150 pubic citizens, with respect to the case study area. The fuzzy majority method aggregates the archived results of AHP to determine the preferred locations that are suitable for public parking. The proposed method was implemented using a telegram bot platform. Two main advantages of the collaborative decision making scenario for public urban site selection are the fair distribution of the selected locations and the high satisfaction of users, which increased from 65% to 85%. This study presents an application for site selection based on multi-criteria decision making in a geo-social network context. Numéro de notice : A2018-098 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030082 En ligne : https://doi.org/10.3390/ijgi7030082 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89513
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Evaluation of close-range photogrammetry image collection methods for estimating tree diameters / Martin Mokroš in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Evaluation of close-range photogrammetry image collection methods for estimating tree diameters Type de document : Article/Communication Auteurs : Martin Mokroš, Auteur ; Xinlian Liang, Auteur ; Peter Surový, Auteur ; Peter Valent, Auteur ; Juraj Čerňava, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie terrestre
[Termes IGN] angle de visée
[Termes IGN] diamètre des arbres
[Termes IGN] Fagus sylvatica
[Termes IGN] photogrammétrie métrologique
[Termes IGN] placette d'échantillonnage
[Termes IGN] semis de pointsRésumé : (Auteur) The potential of close-range photogrammetry (CRP) to compete with terrestrial laser scanning (TLS) to produce dense and accurate point clouds has increased in recent years. The use of CRP for estimating tree diameter at breast height (DBH) has multiple advantages over TLS. For example, point clouds from CRP are similar to TLS, but hardware costs are significantly lower. However, a number of data collection issues need to be clarified before the use of CRP in forested areas is considered effective. In this paper we focused on different CRP data collection methods to estimate DBH. We present seven methods that differ in camera orientation, shooting mode, data collection path, and other important factors. The methods were tested on a research plot comprised of European beeches (Fagus sylvatica L.). The circle-fitting algorithm was used to estimate DBH. Four of the seven methods were capable of producing a dense point cloud. The tree detection rate varied from 49% to 81%. Estimates of DBH produced a root mean square error that varied from 4.41 cm to 5.98 cm. The most accurate method was achieved using a vertical camera orientation, stop-and-go shooting mode, and a path leading around the plot with two diagonal paths through the plot. This method also had the highest rate of tree detection (81%). Numéro de notice : A2018-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030093 En ligne : https://doi.org/10.3390/ijgi7030093 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89514
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]An approach to measuring semantic relatedness of geographic terminologies using a thesaurus and lexical database sources / Zugang Chen in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : An approach to measuring semantic relatedness of geographic terminologies using a thesaurus and lexical database sources Type de document : Article/Communication Auteurs : Zugang Chen, Auteur ; Jia Song, Auteur ; Yaping Yang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] recherche d'information géographique
[Termes IGN] relation sémantique
[Termes IGN] représentation des connaissances
[Termes IGN] terminologie
[Termes IGN] thesaurusRésumé : (Auteur) In geographic information science, semantic relatedness is important for Geographic Information Retrieval (GIR), Linked Geospatial Data, geoparsing, and geo-semantics. But computing the semantic similarity/relatedness of geographic terminology is still an urgent issue to tackle. The thesaurus is a ubiquitous and sophisticated knowledge representation tool existing in various domains. In this article, we combined the generic lexical database (WordNet or HowNet) with the Thesaurus for Geographic Science and proposed a thesaurus–lexical relatedness measure (TLRM) to compute the semantic relatedness of geographic terminology. This measure quantified the relationship between terminologies, interlinked the discrete term trees by using the generic lexical database, and realized the semantic relatedness computation of any two terminologies in the thesaurus. The TLRM was evaluated on a new relatedness baseline, namely, the Geo-Terminology Relatedness Dataset (GTRD) which was built by us, and the TLRM obtained a relatively high cognitive plausibility. Finally, we applied the TLRM on a geospatial data sharing portal to support data retrieval. The application results of the 30 most frequently used queries of the portal demonstrated that using TLRM could improve the recall of geospatial data retrieval in most situations and rank the retrieval results by the matching scores between the query of users and the geospatial dataset. Numéro de notice : A2018-100 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : doi:10.3390/ijgi7030098 En ligne : https://doi.org/10.3390/ijgi7030098 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89515
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Accuracy assessment of different digital surface models / Ugur Alganci in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Accuracy assessment of different digital surface models Type de document : Article/Communication Auteurs : Ugur Alganci, Auteur ; Baris Besol, Auteur ; Elif Sertel, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] estimation de précision
[Termes IGN] image ALOS
[Termes IGN] image Pléiades
[Termes IGN] image SPOT
[Termes IGN] MNS ASTER
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surfaceRésumé : (Auteur) Digital elevation models (DEMs), which can occur in the form of digital surface models (DSMs) or digital terrain models (DTMs), are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m, Shuttle Radar Topography Mission (SRTM) 30 m, and Advanced Land Observing Satellite (ALOS) 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR) 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI)—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross-sections were extracted from the DSMs to evaluate the accuracies related to land cover. The PHR and SPOT DSMs had the highest accuracies of all of the testing methods, followed by the ALOS DSM, which had very promising results. Comparatively, the SRTM and ASTER DSMs had the worst accuracies. Additionally, the PHR and SPOT DSMs captured man-made objects and above-terrain structures, which indicated the need for post-processing to attain better representations. Numéro de notice : A2018-101 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030114 En ligne : https://doi.org/10.3390/ijgi7030114 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89516
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Progressive amalgamation of building clusters for map generalization based on scaling subgroups / Xianjin He in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Progressive amalgamation of building clusters for map generalization based on scaling subgroups Type de document : Article/Communication Auteurs : Xianjin He, Auteur ; Xinchang Zhang, Auteur ; Jie Yang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] approche hiérarchique
[Termes IGN] généralisation du bâti
[Termes IGN] regroupement de données
[Termes IGN] représentation multiple
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map generalization utilizes transformation operations to derive smaller-scale maps from larger-scale maps, and is a key procedure for the modelling and understanding of geographic space. Studies to date have largely applied a fixed tolerance to aggregate clustered buildings into a single object, resulting in the loss of details that meet cartographic constraints and may be of importance for users. This study aims to develop a method that amalgamates clustered buildings gradually without significant modification of geometry, while preserving the map details as much as possible under cartographic constraints. The amalgamation process consists of three key steps. First, individual buildings are grouped into distinct clusters by using the graph-based spatial clustering application with random forest (GSCARF) method. Second, building clusters are decomposed into scaling subgroups according to homogeneity with regard to the mean distance of subgroups. Thus, hierarchies of building clusters can be derived based on scaling subgroups. Finally, an amalgamation operation is progressively performed from the bottom-level subgroups to the top-level subgroups using the maximum distance of each subgroup as the amalgamating tolerance instead of using a fixed tolerance. As a consequence of this step, generalized intermediate scaling results are available, which can form the multi-scale representation of buildings. The experimental results show that the proposed method can generate amalgams with correct details, statistical area balance and orthogonal shape while satisfying cartographic constraints (e.g., minimum distance and minimum area). Numéro de notice : A2018-102 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030116 En ligne : https://doi.org/10.3390/ijgi7030116 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89517
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Graph-based matching of points-of-interest from collaborative geo-datasets / Tessio Novack in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Graph-based matching of points-of-interest from collaborative geo-datasets Type de document : Article/Communication Auteurs : Tessio Novack, Auteur ; Robin Peters, Auteur ; Alexander Zipf, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement de points
[Termes IGN] conflation
[Termes IGN] Foursquare
[Termes IGN] Londres
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] similitudeRésumé : (Auteur) Several geospatial studies and applications require comprehensive semantic information from points-of-interest (POIs). However, this information is frequently dispersed across different collaborative mapping platforms. Surprisingly, there is still a research gap on the conflation of POIs from this type of geo-dataset. In this paper, we focus on the matching aspect of POI data conflation by proposing two matching strategies based on a graph whose nodes represent POIs and edges represent matching possibilities. We demonstrate how the graph is used for (1) dynamically defining the weights of the different POI similarity measures we consider; (2) tackling the issue that POIs should be left unmatched when they do not have a corresponding POI on the other dataset and (3) detecting multiple POIs from the same place in the same dataset and jointly matching these to the corresponding POI(s) from the other dataset. The strategies we propose do not require the collection of training samples or extensive parameter tuning. They were statistically compared with a “naive”, though commonly applied, matching approach considering POIs collected from OpenStreetMap and Foursquare from the city of London (England). In our experiments, we sequentially included each of our methodological suggestions in the matching procedure and each of them led to an increase in the accuracy in comparison to the previous results. Our best matching result achieved an overall accuracy of 91%, which is more than 10% higher than the accuracy achieved by the baseline method. Numéro de notice : A2018-103 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030117 En ligne : https://doi.org/10.3390/ijgi7030117 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89518
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]A co-citation and cluster analysis of scientometrics of geographic information ontology / Yu Liu in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : A co-citation and cluster analysis of scientometrics of geographic information ontology Type de document : Article/Communication Auteurs : Yu Liu, Auteur ; Lin Li, Auteur ; Hang Shen, Auteur ; Hui Yang, Auteur ; Feng Luo, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] données localisées
[Termes IGN] ontologie
[Termes IGN] publication
[Termes IGN] recherche scientifiqueRésumé : (Bibliographie) Geographic information ontology represents an effective means of expressing geographic concepts and relationships between them. As an emerging field of study, it has drawn the attention of increasing numbers of scholars worldwide. In this study, both co-citation and cluster analysis methods of scientometrics are used to perform a comprehensive analysis of the papers on the topic of geographic information ontology indexed by the Web of Science (WoS) and published between 2001 and 2016. The results show that the history of the study of geographic information ontology can be divided roughly into three periods. Computer science and mathematics play important roles in this field of study. The International Journal of Geographical Information Science is an important periodical that provides knowledge resources for the study of geographic information ontology. The papers of Gruber TR and Guarino N are referenced most frequently, as well as that of Smith B., who formally introduced information ontology to the field of geographic information science. Providing personalized and intelligent geographic information services for users is an important focus of geographic information ontology. Numéro de notice : A2018-104 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030120 En ligne : https://doi.org/10.3390/ijgi7030120 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89519
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]