Geocarto international . vol 33 n° 9Paru le : 01/09/2018 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAssessment of Nigeriasat-1 satellite data for urban land use/land cover analysis using object-based image analysis in Abuja, Nigeria / Christopher Ifechukwude Chima in Geocarto international, vol 33 n° 9 (September 2018)
[article]
Titre : Assessment of Nigeriasat-1 satellite data for urban land use/land cover analysis using object-based image analysis in Abuja, Nigeria Type de document : Article/Communication Auteurs : Christopher Ifechukwude Chima, Auteur ; Nigel Trodd, Auteur ; Matthew Blackett, Auteur Année de publication : 2018 Article en page(s) : pp 893 - 911 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] image Landsat-ETM+
[Termes IGN] image NigeriaSat
[Termes IGN] image SPOT 5
[Termes IGN] image SPOT-HRG
[Termes IGN] occupation du solRésumé : (Auteur) This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis. Numéro de notice : A2018-336 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1316778 Date de publication en ligne : 08/05/2017 En ligne : https://doi.org/10.1080/10106049.2017.1316778 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90550
in Geocarto international > vol 33 n° 9 (September 2018) . - pp 893 - 911[article]Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data / P. Kumar in Geocarto international, vol 33 n° 9 (September 2018)
[article]
Titre : Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data Type de document : Article/Communication Auteurs : P. Kumar, Auteur ; R. Prasad, Auteur ; D. K. Gupta, Auteur ; V. N. Mishra, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 942 - 956 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande C
[Termes IGN] blé (céréale)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] croissance végétale
[Termes IGN] cultures
[Termes IGN] données polarimétriques
[Termes IGN] estimation statistique
[Termes IGN] hiver
[Termes IGN] image Sentinel-SAR
[Termes IGN] Leaf Area Index
[Termes IGN] régression
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste marge
[Termes IGN] teneur en eau de la végétationRésumé : (Auteur) In the present study, Sentinel-1A Synthetic Aperture Radar analysis of time series data at C-band was carried out to estimate the winter wheat crop growth parameters. Five different date images were acquired during January 2015–April 2015 at different growth stages from tillering to ripening in Varanasi district, India. The winter wheat crop parameters, i.e. leaf area index, vegetation water content (VWC), fresh biomass (FB), dry biomass (DB) and plant height (PH) were estimated using random forest regression (RFR), support vector regression (SVR), artificial neural network regression (ANNR) and linear regression (LR) algorithms. The Ground Range Detected products of Interferometric Wide (IW) Swath were used at VV polarization. The three different subplots of 1 m2 area were taken for the measurement of crop parameters at every growth stage. In total, 73 samples were taken as the training data-sets and 39 samples were taken as testing data-sets. The highest sensitivity (adj. R2 = 0.95579) of backscattering with VWC was found using RFR algorithm, whereas the lowest sensitivity (adj. R2 = 0.66201) was found for the PH using LR algorithm. Overall results indicate more accurate estimation of winter wheat parameters by the RFR algorithm followed by SVR, ANNR and LR algorithms. Numéro de notice : A2018-337 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1316781 Date de publication en ligne : 18/04/2017 En ligne : https://doi.org/10.1080/10106049.2017.1316781 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90551
in Geocarto international > vol 33 n° 9 (September 2018) . - pp 942 - 956[article]