ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 142Paru le : 01/08/2018 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2018081 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2018083 | DEP-EXM | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2018082 | DEP-EAF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierDigital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level / Tristan R.H. Goodbody in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : Digital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level Type de document : Article/Communication Auteurs : Tristan R.H. Goodbody, Auteur ; Nicholas C. Coops, Auteur ; Txomin Hermosilla, Auteur ; Piotr Tompalski, Auteur ; Grant MacCartney, Auteur ; David A. MacLean, Auteur Année de publication : 2018 Article en page(s) : pp 1 - 11 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] défoliation
[Termes IGN] dégradation de la flore
[Termes IGN] échantillonnage d'image
[Termes IGN] insecte nuisible
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] méthode des moindres carrés
[Termes IGN] Ontario (Canada)
[Termes IGN] photogrammétrie aérienne
[Termes IGN] photogrammétrie numérique
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] semis de points
[Termes IGN] surface terrière
[Termes IGN] surveillance forestière
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Spruce budworm (Choristoneura fumiferana [Clem.], Lepidoptera: Tortricidae) is a native defoliating insect with an important disturbance role in the eastern boreal forests of North America. With an extensive history of outbreaks and associated impacts on forest structural changes and timber supply, the mapping of spruce budworm defoliation has been of major management importance. In this study we assessed the ability of high spatial resolution digital aerial photogrammetric (DAP) data to predict cumulative defoliation as well as basal area and merchantable volume in spruce budworm host stands in the Gordon Cosens Forest south of Kapuskasing, Ontario, Canada. To do so, DAP derived structural and spectral metrics were incorporated to implement a stratified sampling design to improve the efficiency and cost-effectiveness of field surveying. Standard forest inventory measurements including diameter and height, as well as ocular and branch level defoliation assessments were undertaken on thirty 400 m2 radius plots. A partial least squares analysis was performed to determine whether structural metrics from a DAP point cloud could be influenced by spruce budworm defoliation, as well as determine the relative effectiveness of spectral (e.g. mean NDVI) vs. structural (e.g. 90th percentile of height) metrics, or their combination, for predicting cumulative defoliation. Results indicated that spectral metrics were the most effective for predicting cumulative defoliation (R2 = 0.79), while structural metrics were the least effective (R2 = 0.49). Metrics characterizing variance of the spectral values were found to be the most important predictors. Structural metrics and linear regression were also used to estimate landscape-level volume and basal area per hectare yielding R2 = 0.80 and R2 = 0.90, respectively. Outcomes of this analysis indicate that DAP-derived spectral metrics were more capable of modeling cumulative defoliation, while structural metrics were effective for landscape-level estimations of standard forest inventory attributes. This analysis indicated that the provision of both spectral and structural metrics from a single aerial imagery survey has potential to enhance defoliation monitoring and forest attribute modeling at a landscape-level. Numéro de notice : A2018-290 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.012 Date de publication en ligne : 01/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90408
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 1 - 11[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data / Li Zhuo in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data Type de document : Article/Communication Auteurs : Li Zhuo, Auteur ; Qingli Shi, Auteur ; Haiyan Tao, Auteur ; Jing Zheng, Auteur ; Qiuping Li, Auteur Année de publication : 2018 Article en page(s) : pp 64 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges temporels
[Termes IGN] détection de changement
[Termes IGN] Enhanced vegetation index
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] image DMSP-OLS
[Termes IGN] image Terra-MODIS
[Termes IGN] Kouangtoung (Chine)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] surface imperméableRésumé : (Auteur) Impervious surface area (ISA) is an important indicator for monitoring the intensity of human activity and ecological environment changes. Developing effective methods for estimation of ISA at different scales has thus been pursued by many scientists. The temporal mixture analysis (TMA), which is a variant of spectral mixture analysis that makes full use of the phenological information of different land cover types, is suitable for estimating the ISA fraction at a large scale. The existing TMA-based ISA fraction estimation methods rely on the assumption that pure pixels exist for all the endmembers, which, however, is not true in the case of coarse-resolution datasets. Moreover, the existing method cannot effectively differentiate bare soil from ISA effectively, which may lead to overestimation of the ISA fraction. To address these problems, we propose a new ISA estimation method based on TMA in this study, using a Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) products, the GlobeLand30 product, and the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) data. The proposed method contains four major steps. First, the MODIS NDVI time-series datasets and GlobeLand30 land cover product were used to create an NDVI temporal profile subset for the TMA model. Second, a preliminary ISA fraction map was derived on the basis of optimized endmember temporal profiles, which were generated by unmixing the selected NDVI temporal profile subset through an improved spatial-spectral preprocessing nonnegative matrix factorization algorithm (ISSPP-NMF). Then, the preliminary ISA fraction was further optimized by incorporating the EVI-adjusted night-time light index (EANTLI), which can mitigate both saturation problems and the blooming effect of the DMSP-OLS data. An effective threshold method was introduced in this step to reduce the impact of bare soil on the ISA estimation. Finally, the estimated fraction of ISA was evaluated through accuracy assessment. The proposed method was tested in two study areas, namely, Guangdong Province and the Yangtze River Delta (YRD) of China, to prove its applicability in different regions. Effectiveness of the proposed method was proven through the comparison between the proposed method with traditional TMA-based methods. The results from these analyses indicate that the proposed method outperforms the others in ISA estimation, with an overall root mean square error (RMSE) of 9.2% and a coefficient of determination (R2) of 0.8872 in Guangdong and a RMSE of 8.9% and R2 of 0.8923 in YRD. This study also proves that the ISSPP-NMF method can produce more appropriate endmembers regardless of the existence of pure pixels. The post-processing with the EANLTI procedure can effectively reduce the bare soil effect in TMA-based ISA estimation. Numéro de notice : A2018-292 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.016 Date de publication en ligne : 05/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90409
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 64 - 77[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A deep learning approach to DTM extraction from imagery using rule-based training labels / Caroline M. Gevaert in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : A deep learning approach to DTM extraction from imagery using rule-based training labels Type de document : Article/Communication Auteurs : Caroline M. Gevaert, Auteur ; Claudio Persello, Auteur ; M. George Vosselman, Auteur Année de publication : 2018 Article en page(s) : pp 106 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de règles
[Termes IGN] benchmark spatial
[Termes IGN] Dar-es-Salam (Tanzanie)
[Termes IGN] drone
[Termes IGN] échantillonnage d'image
[Termes IGN] extraction automatique
[Termes IGN] Kigali (Rwanda)
[Termes IGN] Lombardie
[Termes IGN] modèle numérique de terrain
[Termes IGN] photogrammétrie aérienne
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Existing algorithms for Digital Terrain Model (DTM) extraction still face difficulties due to data outliers and geometric ambiguities in the scene such as contiguous off-ground areas or sloped environments. We postulate that in such challenging cases, the radiometric information contained in aerial imagery may be leveraged to distinguish between ground and off-ground objects. We propose a method for DTM extraction from imagery which first applies morphological filters to the Digital Surface Model to obtain candidate ground and off-ground training samples. These samples are used to train a Fully Convolutional Network (FCN) in the second step, which can then be used to identify ground samples for the entire dataset. The proposed method harnesses the power of state-of-the-art deep learning methods, while showing how they can be adapted to the application of DTM extraction by (i) automatically selecting and labelling dataset-specific samples which can be used to train the network, and (ii) adapting the network architecture to consider a larger surface area without unnecessarily increasing the computational burden. The method is successfully tested on four datasets, indicating that the automatic labelling strategy can achieve an accuracy which is comparable to the use of manually labelled training samples. Furthermore, we demonstrate that the proposed method outperforms two reference DTM extraction algorithms in challenging areas. Numéro de notice : A2018-298 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.06.001 Date de publication en ligne : 15/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.06.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90410
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 106 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Intra-annual phenology for detecting understory plant invasion in urban forests / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : Intra-annual phenology for detecting understory plant invasion in urban forests Type de document : Article/Communication Auteurs : Kunwar K. Singh, Auteur ; Yin-Hsuen Chen, Auteur ; Lindsey Smart, Auteur ; Josh Gray, Auteur ; Ross K. Meentemeyer, Auteur Année de publication : 2018 Article en page(s) : pp 151 - 161 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de la végétation
[Termes IGN] détection d'anomalie
[Termes IGN] espèce exotique envahissante
[Termes IGN] flore urbaine
[Termes IGN] forêt tempérée
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] Ligustrum sinense
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] protection de la biodiversité
[Termes IGN] surveillance forestièreRésumé : (Auteur) Accurate and repeatable mapping of biological plant invasions is essential to develop successful management strategies for conserving native biodiversity. While overstory invasive plants have been successfully detected and mapped using multiple methods, understory invasive detection remains a challenge, particularly in dense forested environments. Very few studies have utilized an approach that identifies and aligns the acquisition timing of remote sensing imagery with peak phenological differences between understory and overstory vegetation types. We investigated this opportunity by analyzing a monthly time-series of 2011 Landsat TM data to identify acquisition periods with the highest phenological differences between understory and overstory vegetation for detecting the spatial distribution of the exotic understory plant Ligustrum sinense Lour., a rapidly spreading invader in urbanizing regions of the southeastern United States. We used vegetation indices (VI) to establish intra-annual phenological trends for L. sinense, evergreen forest, and deciduous forest located in Mecklenburg County, North Carolina, USA. We developed Random Forest (RF) models to detect L. sinense from those time steps exhibiting the highest phenological differences. We assessed the relative contribution of VI and topographic indices (TI) to the detection of L. sinense. We compared the top performing models and used the best overall model to produce a map of L. sinense for the study area. RF models that included VI, TI, and Landsat TM bands for March 13 and 29, 2011 (the periods with highest detected phenological differences), produced the highest overall accuracy and Kappa estimates, outperforming the combination of VI and TI by 8.5% in accuracy and 20.5% in Kappa. The top performing model from the RF produced a Kappa of 0.75. Our findings suggest that selecting remote sensing data for a period when phenological differences between L. sinense and forest types are at their peak can improve the detection and mapping of L. sinense. Numéro de notice : A2018-293 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.023 Date de publication en ligne : 15/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90411
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 151 - 161[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques / Chinsu Lin in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques Type de document : Article/Communication Auteurs : Chinsu Lin, Auteur ; Shih-Yu Chen, Auteur ; Chia-Chun Chen, Auteur ; Chia-Huei Tai, Auteur Année de publication : 2018 Article en page(s) : pp 174 - 189 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse d'image orientée objet
[Termes IGN] changement climatique
[Termes IGN] croissance des arbres
[Termes IGN] drone
[Termes IGN] feuille (végétation)
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] image RVB
[Termes IGN] indice de végétation
[Termes IGN] Kappa de Cohen
[Termes IGN] Taïwan
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Phenological events of tree leaves from initiation to senescence is generally influenced by temperature and water availability. Detection of newly grown leaves (NGL) is useful in the diagnosis of growth of trees, tree stress and even climatic change. Utilizing very high resolution UAV images, this paper examines the feasibility of NGL detection using hyperspectral detection algorithms and anomaly detectors. The issues of pixel resolution and hard decision thresholding in deriving accurate NGL maps are also explored. Results showed that the blind-detection algorithms RXDs are not suitable for NGL detection due to the spectra similarity between NGL and both mature leaves and grass, while brighter pixels, such as those produced by soil and concrete materials, are more easily recognized as anomaly in contrast to forest. Matching filter (MF) based detectors are, however, able to accurately detect NGL over forest stands and are even more effective in the sense of achieving satisfactory true positives and true negatives while providing minimal false alarms. Of the tested partial knowledge MF algorithms, the covariance matched filter based distance (KMFD) detector performed very well with overall accuracy (OA) 0.97 and kappa coefficient () 0.60 on a natural resolution of 6.75 cm image. When a variety of mature-leaf nonobjective targets are included in the detection, the orthogonal subspace projector (OSP) tends to suppress NGL pixels as an unwanted signature and this leads to poor detection. Conversely, the target constrained interference minimized filter (TCIMF) detector is still able to effectively detect NGL with a satisfactory OA and through effective matching filter of the target signature as the hard-decision threshold is subject to a level of 5% or 1% probability of false alarms. From decimeter resolution satellite images, the KMFD and TCIMF detectors are capable of achieving an accuracy of OA = 0.94 and = 0.56 or OA = 0.87 and = 0.48 for images with a resolution of 33.75 cm or 67.50 cm respectively. This indicates that hyperspectral target detection techniques have great potential in NGL detection via high spatial resolution satellite multispectral images. Numéro de notice : A2018-294 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.022 Date de publication en ligne : 15/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90412
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 174 - 189[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Comparison of high-density LiDAR and satellite photogrammetry for forest inventory / Grant D. Pearse in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : Comparison of high-density LiDAR and satellite photogrammetry for forest inventory Type de document : Article/Communication Auteurs : Grant D. Pearse, Auteur ; Jonathan P. Dash, Auteur ; Henrik J. Persson, Auteur ; Michael S. Watt, Auteur Année de publication : 2018 Article en page(s) : pp 257 - 267 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] densité de la végétation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] hauteur des arbres
[Termes IGN] image multibande
[Termes IGN] image Pléiades-HR
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] Nouvelle-Zélande
[Termes IGN] photogrammétrie numérique
[Termes IGN] Pinus radiata
[Termes IGN] semis de points
[Termes IGN] surface terrière
[Termes IGN] sylviculture
[Termes IGN] volume en bois
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Point cloud data derived from stereo satellite imagery has the potential to provide large-scale forest inventory assessment but these methods are known to include higher error than airborne laser scanning (ALS). This study compares the accuracy of forest inventory attributes estimated from high-density ALS (21.1 pulses m−2) point cloud data (PCD) and PCD derived from photogrammetric methods applied to stereo satellite imagery obtained over a Pinus radiata D. Don plantation forest in New Zealand. The statistical and textural properties of the canopy height models (CHMs) derived from each point cloud were included alongside standard PCD metrics as a means of improving the accuracy of predictions for key forest inventory attributes. For mean top height (a measure of dominant height in a stand), ALS data produced better estimates (R2 = 0.88; RMSE = 1.7 m) than those obtained from satellite data (R2 = 0.81; RMSE = 2.1 m). This was attributable to a general over-estimation of canopy heights in the satellite PCD. ALS models produced poor estimates of stand density (R2 = 0.48; RMSE = 112.1 stems ha−1), as did the satellite PCD models (R2 = 0.42; RMSE = 118.4 stems ha−1). ALS models produced accurate estimates of basal area (R2 = 0.58; RMSE = 12 m2 ha−1), total stem volume (R2 = 0.72; RMSE = 107.5 m3 ha−1), and total recoverable volume (R2 = 0.74; RMSE = 92.9 m3 ha−1). These values differed little from the estimates of basal area (R2 = 0.57; RMSE = 12.2 m2 ha−1), total stem volume (R2 = 0.70; RMSE = 112.6 m3 ha−1), and total recoverable volume (R2 = 0.73; RMSE = 96 m3 ha−1) obtained from satellite PCD models. The statistical and textural metrics computed from the CHMs were important variables in all of the models derived from both satellite and ALS PCD, nearly always outranking the standard PCD metrics in measures of importance. For the satellite PCD models, the CHM-derived metrics were nearly exclusively identified as important variables. These results clearly show that point cloud data obtained from stereo satellite imagery are useful for prediction of forest inventory attributes in intensively managed forests on steeper terrain. Furthermore, these data offer forest managers the benefit of obtaining both inventory data and high-resolution multispectral imagery from a single product. Numéro de notice : A2018-295 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.06.006 Date de publication en ligne : 22/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.06.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90413
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 257 - 267[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt ICARE-VEG: A 3D physics-based atmospheric correction method for tree shadows in urban areas / Karine R.M. Adeline in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : ICARE-VEG: A 3D physics-based atmospheric correction method for tree shadows in urban areas Type de document : Article/Communication Auteurs : Karine R.M. Adeline, Auteur ; Xavier Briottet , Auteur ; X. Ceamanos, Auteur ; T. Dartigalongue, Auteur ; Jean-Philippe Gastellu-Etchegorry, Auteur Année de publication : 2018 Article en page(s) : pp 311 - 327 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] arbre (flore)
[Termes IGN] correction atmosphérique
[Termes IGN] détection d'ombre
[Termes IGN] houppier
[Termes IGN] image à très haute résolution
[Termes IGN] image hyperspectrale
[Termes IGN] Leaf Area Index
[Termes IGN] logiciel de traitement d'image
[Termes IGN] modèle de transfert radiatif
[Termes IGN] modélisation 3D
[Termes IGN] réflectance végétale
[Termes IGN] zone urbaineRésumé : (Auteur) Many applications dedicated to urban areas (e.g. land cover mapping and biophysical properties estimation) using high spatial resolution remote sensing images require the use of 3D atmospheric correction methods, able to model complex light interactions within urban topography such as buildings and trees. Currently, one major drawback of these methods is their lack in modeling the radiative signature of trees (e.g. the light transmitted through the tree crown), which leads to an over-estimation of ground reflectance at tree shadows. No study has been carried out to take into account both optical and structural properties of trees in the correction provided by these methods. The aim of this work is to improve an existing 3D atmospheric correction method, ICARE (Inversion Code for urban Areas Reflectance Extraction), to account for trees in its new version, ICARE-VEG (ICARE with VEGetation). After the execution of ICARE, the methodology of ICARE-VEG consists in tree crown delineation and tree shadow detection, and then the application of a physics-based correction factor in order to perform a tree-specific local correction for each pixel in tree shadow. A sensitivity analysis with a design of experiments performed with a 3D canopy radiative transfer code, DART (Discrete Anisotropic Radiative Transfer), results in fixing the two most critical variables contributing to the impact of an isolated tree crown on the radiative energy budget at tree shadow: the solar zenith angle and the tree leaf area index (LAI). Thus, the approach to determine the correction factor relies on an empirical statistical regression and the addition of a geometric scaling factor to account for the tree crown occultation from ground. ICARE-VEG and ICARE performance were compared and validated in the Visible-Near Infrared Region (V-NIR: 0.4–1.0 µm) with hyperspectral airborne data at 0.8 m resolution on three ground materials types, grass, asphalt and water. Results show that (i) ICARE-VEG improves the mean absolute error in retrieved reflectances compared to ICARE in tree shadows by a multiplicative factor ranging between 4.2 and 18.8, and (ii) reduces the spectral bias in reflectance from visible to NIR (due to light transmission through the tree crown) by a multiplicative factor between 1.0 and 1.4 in terms of spectral angle mapper performance. ICARE-VEG opens the way to a complete interpretation of remote sensing images (sunlit, shade cast by both buildings and trees) and the derivation of scientific value-added products over all the entire image without the preliminary step of shadow masking. Numéro de notice : A2018-296 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.05.015 Date de publication en ligne : 01/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.05.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90415
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 311 - 327[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Three-point-based solution for automated motion parameter estimation of a multi-camera indoor mapping system with planar motion constraint / Fangning He in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : Three-point-based solution for automated motion parameter estimation of a multi-camera indoor mapping system with planar motion constraint Type de document : Article/Communication Auteurs : Fangning He, Auteur ; Ayman Habib, Auteur Année de publication : 2018 Article en page(s) : pp 278 - 291 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] appariement d'images
[Termes IGN] carte d'intérieur
[Termes IGN] compensation par faisceaux
[Termes IGN] coplanarité
[Termes IGN] élément d'orientation interne
[Termes IGN] modélisation 3D
[Termes IGN] orientation relative
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] structure-from-motion
[Termes IGN] valeur aberranteRésumé : (auteur) Accurate indoor 3D models have become a key prerequisite for various applications. Through state-of-the-art image processing techniques, 3D models can be generated from high quality images captured by off-the-shelf digital cameras. To acquire redundant data and produce real scale models, a multi-camera system can be used. However, dedicated approaches for image-based 3D reconstruction using mapping platforms equipped with multiple cameras have not been fully addressed. Assuming the availability of prior information regarding the platform trajectory, this paper presents a new approach for reliable estimation of system motion parameters between different data acquisition epochs of a multi-camera system. This approach, which assumes planar motion of the utilized platform, provides a three-point closed-form solution. The derived solutions are then incorporated within a modified RANSAC framework for outlier detection/removal. It is worth noting that, different from the existing General Camera Model (GCM)-based solutions, the proposed approach is based on a modified co-planarity model, which is essentially a direct extension of the classic stereo-based relative orientation. Moreover, since the proposed approach only provides a maximum number of four possible solutions for system motion parameters over different epochs, it has better computational efficiency when compared to other existing algorithms. Experimental results from real datasets acquired with different configurations have demonstrated the reliability of the proposed approach in motion parameter estimation for indoor multi-camera mapping systems. Numéro de notice : A2018-297 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.06.011 Date de publication en ligne : 01/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.06.011 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90417
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 278 - 291[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt