IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 56 n° 8Paru le : 01/08/2018 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panier3-D deep learning approach for remote sensing image classification / Amina Ben Hamida in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
[article]
Titre : 3-D deep learning approach for remote sensing image classification Type de document : Article/Communication Auteurs : Amina Ben Hamida, Auteur ; Alexandre Benoit, Auteur ; Patrick Lambert, Auteur ; Chokri Ben Amar, Auteur Année de publication : 2018 Article en page(s) : pp 4420 - 4434 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] image hyperspectrale
[Termes IGN] qualité géométrique (image)
[Termes IGN] valeur radiométriqueRésumé : (Auteur) Recently, a variety of approaches have been enriching the field of remote sensing (RS) image processing and analysis. Unfortunately, existing methods remain limited to the rich spatiospectral content of today's large data sets. It would seem intriguing to resort to deep learning (DL)-based approaches at this stage with regard to their ability to offer accurate semantic interpretation of the data. However, the specificity introduced by the coexistence of spectral and spatial content in the RS data sets widens the scope of the challenges presented to adapt DL methods to these contexts. Therefore, the aim of this paper is first to explore the performance of DL architectures for the RS hyperspectral data set classification and second to introduce a new 3-D DL approach that enables a joint spectral and spatial information process. A set of 3-D schemes is proposed and evaluated. Experimental results based on well-known hyperspectral data sets demonstrate that the proposed method is able to achieve a better classification rate than state-of-the-art methods with lower computational costs. Numéro de notice : A2018-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2818945 Date de publication en ligne : 20/04/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2818945 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91252
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 8 (August 2018) . - pp 4420 - 4434[article]A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
[article]
Titre : A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification Type de document : Article/Communication Auteurs : Zhen Wang, Auteur ; Liqiang Zhang, Auteur ; Liang Zhang, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 4594 - 4604 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire
[Termes IGN] classification par réseau neuronal
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] scène urbaine
[Termes IGN] semis de pointsMots-clés libres : deep neural network with spatial pooling (DNNSP) Résumé : (Auteur) The large number of object categories and many overlapping or closely neighboring objects in large-scale urban scenes pose great challenges in point cloud classification. Most works in deep learning have achieved a great success on regular input representations, but they are hard to be directly applied to classify point clouds due to the irregularity and inhomogeneity of the data. In this paper, a deep neural network with spatial pooling (DNNSP) is proposed to classify large-scale point clouds without rasterization. The DNNSP first obtains the point-based feature descriptors of all points in each point cluster. The distance minimum spanning tree-based pooling is then applied in the point feature representation to describe the spatial information among the points in the point clusters. The max pooling is next employed to aggregate the point-based features into the cluster-based features. To assure the DNNSP is invariant to the point permutation and sizes of the point clusters, the point-based feature representation is determined by the multilayer perception (MLP) and the weight sharing for each point is retained, which means that the weight of each point in the same layer is the same. In this way, the DNNSP can learn the features of points scaled from the entire regions to the centers of the point clusters, which makes the point cluster-based feature representations robust and discriminative. Finally, the cluster-based features are input to another MLP for point cloud classification. We have evaluated qualitatively and quantitatively the proposed method using several airborne laser scanning and terrestrial laser scanning point cloud data sets. The experimental results have demonstrated the effectiveness of our method in improving classification accuracy. Numéro de notice : A2018-471 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2829625 Date de publication en ligne : 22/05/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2829625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91253
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 8 (August 2018) . - pp 4594 - 4604[article]