IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 56 n° 10Paru le : 01/10/2018 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierUnmixing polarimetric radar images based on land cover type identified by higher resolution optical data before target decomposition: application to forest and bare soil / Sébastien Giordano in IEEE Transactions on geoscience and remote sensing, vol 56 n° 10 (October 2018)
[article]
Titre : Unmixing polarimetric radar images based on land cover type identified by higher resolution optical data before target decomposition: application to forest and bare soil Type de document : Article/Communication Auteurs : Sébastien Giordano , Auteur ; Grégoire Mercier, Auteur ; Jean-Paul Rudant , Auteur Année de publication : 2018 Projets : 1-Pas de projet / Article en page(s) : pp 5850 - 5862 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] biomasse aérienne
[Termes IGN] décomposition spectrale
[Termes IGN] données polarimétriques
[Termes IGN] forêt
[Termes IGN] image Radarsat
[Termes IGN] matrice de covariance
[Termes IGN] occupation du sol
[Termes IGN] polarimétrie radar
[Termes IGN] sol nu
[Termes IGN] surface forestièreRésumé : (auteur) Extracting information from a polarimetric radar representation usually consists in decomposing it with target decomposition algorithms. This first step can be seen as a geometric analysis of the polarimetric information: the identification of physical radar scattering mechanisms. The problem is that average physical parameters are estimated. As a consequence, these parameters might not describe correctly any of the land cover types that can be mixed together into the radar resolution cell. Therefore, using the polarimetric parameters for land cover classification is challenging. The novelty of the method is to propose a thematic analysis of the polarimetric information preceding the geometric one. The objective is to assess if splitting off polarimetric information on a land cover type basis before applying usual target decomposition algorithms can produce more consistent radar scattering mechanisms when land cover classes are mixed inside the radar resolution cell. A cooperative fusion framework in which very high-resolution optical images are used to unmix physical radar scattering mechanisms is proposed. For bare soil and forests, we point out that a linear unmixing model applied to the covariance matrix is able to split off polarimetric information on a land cover type basis. The assessment of the unmixed radar matrices is carried out with polarimetric radar images from the Radarsat-2 satellite. It was found that despite speckle, the reconstructed radar information after the unmixing process is statistically relevant with the observations. The question whether the unmixed radar images contain relevant thematic information is more challenging, but results tend to validate this property. This method could be used to have a better estimation of vegetation biomass in the context of open forested areas. Numéro de notice : A2018-331 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2827258 Date de publication en ligne : 09/07/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2827258 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90475
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 10 (October 2018) . - pp 5850 - 5862[article]