[n° ou bulletin]
est un bulletin de Geomatica / Canadian institute of geomatics = Association canadienne des sciences géomatiques (Canada) (1993 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierHuman mobility semantics analysis : a probabilistic and scalable approach / Xiaohui Guo in Geoinformatica, vol 22 n° 3 (July 2018)
[article]
Titre : Human mobility semantics analysis : a probabilistic and scalable approach Type de document : Article/Communication Auteurs : Xiaohui Guo, Auteur ; Richong Zhang, Auteur ; Xudong Liu, Auteur ; Jinpeng Huai, Auteur Année de publication : 2018 Article en page(s) : pp 507 - 539 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées
[Termes IGN] données spatiotemporelles
[Termes IGN] mobilité humaine
[Termes IGN] programmation stochastique
[Termes IGN] segmentation sémantique
[Termes IGN] trace numériqueRésumé : (Auteur) The popularity of smart mobile devices generated data, e.g., check-ins and geo-tagged status, offers new opportunity for better understanding human mobility regularity. Existing works on this problem usually resort to explicit frequency statistics models, such as association rules and sequential patterns, and rely on Euclidean distance to measure the spatial dependence. However, the noisiness and uncertainty natures of geospatial data hinder these methods’ application on human mobility in robust and intuitive way. Moreover, the mobility spatial data volume and accumulation speed challenge the traditional methods in efficiency, scalability, and time-space complexity aspects. In this context, we leverage full Bayesian sequential modeling, to revisit mobility regularity discovery from high level probabilistic semantic knowledge perspective, and to alleviate the inherent in mobility modeling and geo-data noisiness induced uncertainty. Specifically, the mobility semantics is embodied by virtue of underlying geospatial topics and topical transitions of mobility trajectories. A classic variational inference is derived to estimate posterior and predictive probabilities, and furthermore, the stochastic optimization is utilized to mitigate the costly computational overhead in message passing subroutine. The experimental results confirm that our approach not only reasonably recognizes the geospatial mobility semantic patterns, but also scales up well to embrace the massive spatial-temporal human mobility activity data. Numéro de notice : A2018-310 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-017-0295-0 Date de publication en ligne : 10/04/2017 En ligne : https://doi.org/10.1007/s10707-017-0295-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90757
in Geoinformatica > vol 22 n° 3 (July 2018) . - pp 507 - 539[article]Assessing spatiotemporal predictability of LBSN : a case study of three Foursquare datasets / Ming Li in Geoinformatica, vol 22 n° 3 (July 2018)
[article]
Titre : Assessing spatiotemporal predictability of LBSN : a case study of three Foursquare datasets Type de document : Article/Communication Auteurs : Ming Li, Auteur ; Rene Westerholt, Auteur ; Hongchao Fan, Auteur ; Alexander Zipf, Auteur Année de publication : 2018 Article en page(s) : pp 541 - 561 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] comportement
[Termes IGN] jeu de données localisées
[Termes IGN] modèle de simulation
[Termes IGN] prévision
[Termes IGN] réseau social géodépendant
[Termes IGN] villeRésumé : (Auteur) Location-based social networks (LBSN) have provided new possibilities for researchers to gain knowledge about human spatiotemporal behavior, and to make predictions about how people might behave through space and time in the future. An important requirement of successfully utilizing LBSN in these regards is a thorough understanding of the respective datasets, including their inherent potential as well as their limitations. Specifically, when it comes to predictions, we must know what we can actually expect from the data, and how we could maximize their usefulness. Yet, this knowledge is still largely lacking from the literature. Hence, this work explores one particular aspect which is the theoretical predictability of LBSN datasets. The uncovered predictability is represented with an interval. The lower bound of the interval corresponds to the amount of regular behaviors that can easily be anticipated, and represents the correct predication rate that any algorithm should be able to achieve. The upper bound corresponds to the amount of information that is contained in the dataset, and represents the maximum correct prediction rate that cannot be exceeded by any algorithms. Three Foursquare datasets from three American cities are studied as an example. It is found that, within our investigated datasets, the lower bound of predictability of the human spatiotemporal behavior is 27%, and the upper bound is 92%. Hence, the inherent potentials of the dataset for predicting human spatiotemporal behavior are clarified, and the revealed interval allows a realistic assessment of the quality of predictions and thus of associated algorithms. Additionally, in order to provide further insight into the practical use of the dataset, the relationship between the predictability and the check-in frequencies are investigated from three different perspectives. It was found that the individual perspective provides no significant correlations between the predictability and the check-in frequency. In contrast, the same two quantities are found to be negatively correlated from temporal and spatial perspectives. Our study further indicates that the heavily frequented contexts and some extraordinary geographic features such as airports could be good starting points for effective improvements of prediction algorithms. In general, this research provides novel knowledge regarding the nature of the LBSN dataset and practical insights for a more reasonable utilization of the dataset. Numéro de notice : A2018-349 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-016-0279-5 Date de publication en ligne : 25/11/2016 En ligne : https://doi.org/10.1007/s10707-016-0279-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90758
in Geoinformatica > vol 22 n° 3 (July 2018) . - pp 541 - 561[article]A framework for annotating OpenStreetMap objects using geo-tagged tweets / Xin Chen in Geoinformatica, vol 22 n° 3 (July 2018)
[article]
Titre : A framework for annotating OpenStreetMap objects using geo-tagged tweets Type de document : Article/Communication Auteurs : Xin Chen, Auteur ; Hoang Vo, Auteur ; Yu Wang, Auteur ; Fusheng Wang, Auteur Année de publication : 2018 Article en page(s) : pp 589 - 613 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] corpus
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] enrichissement sémantique
[Termes IGN] géobalise
[Termes IGN] intégration de données
[Termes IGN] objet géographique
[Termes IGN] OpenStreetMap
[Termes IGN] TwitterRésumé : (Auteur) Recent years have witnessed an explosion of geospatial data, especially in the form of Volunteered Geographic Information (VGI). As a prominent example, OpenStreetMap (OSM) creates a free editable map of the world from a large number of contributors. On the other hand, social media platforms such as Twitter or Instagram supply dynamic social feeds at population level. As much of such data is geo-tagged, there is a high potential on integrating social media with OSM to enrich OSM with semantic annotations, which will complement existing objective description oriented annotations to provide a broader range of annotations. In this paper, we propose a comprehensive framework on integrating social media data and VGI data to derive knowledge about geographical objects, specifically, top relevant annotations from tweets for objects in OSM. We first integrate geo-tagged tweets with OSM data with scalable spatial queries running on MapReduce. We propose a frequency based method for annotating boundary based geographic objects (a polygon), and a probability based method for annotating point based geographic objects (Latitude and Longitude), with consideration of noise. We evaluate our methods using a large geo-tagged tweets corpus and representative geographic objects from OSM, which demonstrates promising results through ground-truth comparison and case studies. We are able to produce up to 80% correct names for geographical objects and discover implicitly relevant information, such as popular exhibitions of a museum, the nicknames or visitors’ impression to a tourism attraction. Numéro de notice : A2018-369 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-018-0323-8 Date de publication en ligne : 20/06/2018 En ligne : https://doi.org/10.1007/s10707-018-0323-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90760
in Geoinformatica > vol 22 n° 3 (July 2018) . - pp 589 - 613[article]Combined geo-social search : computing top-k join queries over incomplete information / Yaron Kanza in Geoinformatica, vol 22 n° 3 (July 2018)
[article]
Titre : Combined geo-social search : computing top-k join queries over incomplete information Type de document : Article/Communication Auteurs : Yaron Kanza, Auteur ; Mirit Shalem, Auteur Année de publication : 2018 Article en page(s) : pp 615 - 660 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] approximation
[Termes IGN] données localisées
[Termes IGN] jointure
[Termes IGN] requête spatiale
[Termes IGN] réseau socialRésumé : (Auteur) Geo-social data sets, which fuse the social and the geospatial facets of data, are vibrant data sources that associate people and activities with locations. In a combined geo-social search, several search queries are posed over geospatial and social data sources, or over data sources with both geospatial and social facets; and the search results, provided as ranked lists of items, are integrated by associating matching items, yielding combinations. Each combination has a score which is a function of the scores of the items it comprises, and the goal is to compute the k combinations with the highest score, that is, the top-k combinations. However, since geo-social data sources are heterogeneous, data items may not have matching items in all the ranked lists. Such items cannot be included in complete combinations. Hence, we study the approach where combinations are padded by nulls for missing items, as in outer-join. A combination is maximal if it cannot be extended by replacing a null by an item. We show that if some of the top-k maximal combinations contain null values, the computation requires reading entire lists, and hence, traditional top-k algorithms and optimization techniques are not as effective as in the case of an ordinary top-k join. Thus, we present two novel algorithms for computing the top-k maximal combinations. One novel algorithm is instance optimal over the class of algorithms that compute a ??approximation to the answer. The second algorithm is more efficient than the modification of two common top-k algorithms to compute maximal combinations. We show this analytically, and experimentally over real and synthetic data. Numéro de notice : A2018-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-017-0297-y Date de publication en ligne : 25/03/2017 En ligne : https://doi.org/10.1007/s10707-017-0297-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90762
in Geoinformatica > vol 22 n° 3 (July 2018) . - pp 615 - 660[article]