Forests . vol 8 n° 11Paru le : 01/11/2017 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAn examination of diameter density prediction with k-NN and airborne lidar / Jacob L. Strunk in Forests, vol 8 n° 11 (November 2017)
[article]
Titre : An examination of diameter density prediction with k-NN and airborne lidar Type de document : Article/Communication Auteurs : Jacob L. Strunk, Auteur ; Peter J. Gould, Auteur ; Petteri Packalen, Auteur ; Krishna P. Poudel, Auteur ; Hans-Erik Andersen, Auteur ; Hailemariam Temesgen, Auteur Année de publication : 2017 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Caroline du Sud (Etats-Unis)
[Termes IGN] classification barycentrique
[Termes IGN] classification par la distance de Mahalanobis
[Termes IGN] diamètre des arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) While lidar-based forest inventory methods have been widely demonstrated, performances of methods to predict tree diameters with airborne lidar (lidar) are not well understood. One cause for this is that the performance metrics typically used in studies for prediction of diameters can be difficult to interpret, and may not support comparative inferences between sampling designs and study areas. To help with this problem we propose two indices and use them to evaluate a variety of lidar and k nearest neighbor (k-NN) strategies for prediction of tree diameter distributions. The indices are based on the coefficient of determination (R2), and root mean square deviation (RMSD). Both of the indices are highly interpretable, and the RMSD-based index facilitates comparisons with alternative (non-lidar) inventory strategies, and with projects in other regions. K-NN diameter distribution prediction strategies were examined using auxiliary lidar for 190 training plots distribute across the 800 km2 Savannah River Site in South Carolina, USA. We evaluate the performance of k-NN with respect to distance metrics, number of neighbors, predictor sets, and response sets. K-NN and lidar explained 80% of variability in diameters, and Mahalanobis distance with k = 3 neighbors performed best according to a number of criteria Numéro de notice : A2017-877 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f8110444 Date de publication en ligne : 16/11/2017 En ligne : https://doi.org/10.3390/f8110444 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91213
in Forests > vol 8 n° 11 (November 2017)[article]