Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 84 n° 11Mention de date : November 2018 Paru le : 01/11/2018 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2018111 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierCoupling relationship among scale parameter, segmentation accuracy, and classification accuracy in GeOBIA / Ming Dongping in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 11 (November 2018)
[article]
Titre : Coupling relationship among scale parameter, segmentation accuracy, and classification accuracy in GeOBIA Type de document : Article/Communication Auteurs : Ming Dongping, Auteur ; Wen Zhou, Auteur ; Xu Lu, Auteur ; Min Wang, Auteur ; Yanni Ma, Auteur Année de publication : 2018 Article en page(s) : pp 681-693 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] précision de la classification
[Termes IGN] segmentation d'imageRésumé : (Auteur) The quality of multi-scale segmentation mainly consists of intrasegment homogeneity and intersegment heterogeneity; however, it is difficult to synchronously get both high. It is crucial to make it clear which one of these two measures is more important and what is the coupling relationship among segmentation scale parameter, image segmentation and classification accuracy. This paper employs series of segmentation and classification to show that (1) intrasegment homogeneity is more important than intersegment heterogeneity in GeOBIA; there is always highly positive correlation between intrasegment homogeneity and classification accuracy; (2) with the increase of spectral heterogeneity parameter, both image object amount and the intrasegment homogeneity decrease; however the intersegment heterogeneity increases or increases first then decrease after the appropriate scale; and (3) the appropriate scale means there is a compromise between intrasegment homogeneity and intersegment heterogeneity. The research findings are helpful to raise awareness among practitioners who suffer from scale issues in GeOBIA. Numéro de notice : A2018-484 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.11.681 Date de publication en ligne : 01/11/2018 En ligne : https://doi.org/10.14358/PERS.84.11.681 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91209
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 11 (November 2018) . - pp 681-693[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018111 RAB Revue Centre de documentation En réserve L003 Disponible Change detection based on stacked generalization system with segmentation constraint / Kun Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 11 (November 2018)
[article]
Titre : Change detection based on stacked generalization system with segmentation constraint Type de document : Article/Communication Auteurs : Kun Tan, Auteur ; Yusha Zhang, Auteur ; Qian Du, Auteur ; Peijun Du, Auteur ; Xiao Jin, Auteur ; Jiayi Li, Auteur Année de publication : 2018 Article en page(s) : pp 733 - 741 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] détection de changement
[Termes IGN] image Quickbird
[Termes IGN] image ZiYuan-3
[Termes IGN] segmentation d'imageRésumé : (Auteur) Change detection based on a multi-classifier ensemble system can take advantage of multiple classifiers to extract change information in remote sensing images. In this paper, an efficient heterogeneous ensemble algorithm, i.e., the stacked generalization (SG) combined with image segmentation, is proposed to construct a simple multi-classifier ensemble system that can offer better detection accuracy with lower computational cost. Due to the rich spatial information in high-spatial-resolution remote sensing images, structure texture (morphological) and statistical texture features are extracted to construct the input data to the ensemble system along with spectral features. In addition, constrained analysis on segmented objects integrates the smaller heterogeneity segmentation map and pixel-wise change map to generate the final change map. The experiments were carried out on two ZY-3 and a QuickBird dataset. The results show that the proposed algorithm can integrate the advantages of both pixel-wise ensemble and object-oriented methods, and effectively improve the accuracy and stability of change detection. Numéro de notice : A2018-485 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.11.733 Date de publication en ligne : 01/11/2018 En ligne : https://doi.org/10.14358/PERS.84.11.733 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91210
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 11 (November 2018) . - pp 733 - 741[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018111 RAB Revue Centre de documentation En réserve L003 Disponible