Détail de l'auteur
Auteur C.S. Rowland |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Training a neural network with a canopy reflectance model to estimate crop leaf area index / F. Mark Danson in International Journal of Remote Sensing IJRS, vol 24 n° 23 (December 2003)
[article]
Titre : Training a neural network with a canopy reflectance model to estimate crop leaf area index Type de document : Article/Communication Auteurs : F. Mark Danson, Auteur ; C.S. Rowland, Auteur Année de publication : 2003 Article en page(s) : pp 4891 - 4905 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] betterave sucrière
[Termes IGN] classification par réseau neuronal
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] neurone artificiel
[Termes IGN] réflectance végétaleRésumé : (Auteur) This paper outlines the strategies available for estimating the biophysical properties of crop canopies from remotely sensed data. Spectral reflectance and biophysical data were obtained over 132 plots of sugar beet (Beta vulgaris L.) and in the first part of the paper the strength of the relationships between vegetation indices (VI) and leaf area index (LAI) are examined. In the second part, an approach is tested in which a canopy reflectance model is used to generate simulated spectra for a wide range of biophysical conditions and these data are used to train an artificial neural network (ANN). The advantage of the second approach is that a priori knowledge of the measurement conditions including soil reflectance, canopy architecture and solar position can be included explicitly in the modelling. The results show that the estimation of sugar beet LAI using a trained neural network is more reliable than the use of VI and has the potential to replace the use of VI for operational applications. The use of a priori data on the variation in soil spectral reflectance gave rise to a small increase in LAI estimation accuracy. Numéro de notice : A2003-315 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/0143116031000070319 En ligne : https://doi.org/10.1080/0143116031000070319 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=22611
in International Journal of Remote Sensing IJRS > vol 24 n° 23 (December 2003) . - pp 4891 - 4905[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 080-03231 RAB Revue Centre de documentation En réserve L003 Exclu du prêt