IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 56 n° 12Paru le : 01/12/2018 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSeparating the influence of vegetation changes in polarimetric differential SAR interferometry / Virginia Brancato in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Separating the influence of vegetation changes in polarimetric differential SAR interferometry Type de document : Article/Communication Auteurs : Virginia Brancato, Auteur ; Irena Hajnsek, Auteur Année de publication : 2018 Article en page(s) : pp 6871 - 6883 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] biomasse
[Termes IGN] carte de la végétation
[Termes IGN] détection de changement
[Termes IGN] données polarimétriques
[Termes IGN] humidité du sol
[Termes IGN] image AIRSAR
[Termes IGN] interferométrie différentielle
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] polarimétrie radar
[Termes IGN] surface cultivée
[Termes IGN] télédétection en hyperfréquenceRésumé : (auteur) Soil moisture and wet biomass changes between two noninstantaneous SAR observations markedly affect the displacement estimates obtainable with Differential Interferometric Synthetic Aperture Radar (DInSAR). The separation, the modeling of these influences besides their uncoupling from the displacement signal, and the atmospheric disturbances are still unsolved issues for several repeat-pass interferometric applications. This paper focuses on the separation of vegetation changes from the other phase contributions affecting repeat-pass measurements over vegetated areas. These phase terms mainly relate to changes in soil moisture, atmospheric delays, and surface deformation. The separation is achieved with a first-order scattering solution decomposing the observed HH and VV DInSAR phases in the sum of several phase terms. The latter mainly consider the changes in soil surface scattering and in the two-way propagation through a vertically oriented vegetation canopy. No assumption is made on the spatiotemporal evolution of the displacement and atmosphere. The overall approach is tested on a L-band data set acquired over an agricultural area. Upon calibration, the model allows for estimating changes in wet biomass based on the nonzero HH–VV DInSAR phase difference observed over several birefringent agricultural fields. The obtained biomass estimates provide then a correction for the effect of vegetation changes on the observed HH and VV DInSAR phases. Deprived of the vegetation contribution, the remainder phase terms can be more easily explored for further analyses, e.g., the estimation of soil moisture changes and/or surface movements in vertically oriented vegetated areas. Numéro de notice : A2018-551 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2845368 Date de publication en ligne : 14/08/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2845368 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91639
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 6871 - 6883[article]Remote sensing scene classification using multilayer stacked covariance pooling / Nanjun He in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Remote sensing scene classification using multilayer stacked covariance pooling Type de document : Article/Communication Auteurs : Nanjun He, Auteur ; Leyuan Fang, Auteur ; Shutao Li, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 6899 - 6910 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de covariance
[Termes IGN] représentation cartographique
[Termes IGN] scèneRésumé : (auteur) This paper proposes a new method, called multilayer stacked covariance pooling (MSCP), for remote sensing scene classification. The innovative contribution of the proposed method is that it is able to naturally combine multilayer feature maps, obtained by pretrained convolutional neural network (CNN) models. Specifically, the proposed MSCP-based classification framework consists of the following three steps. First, a pretrained CNN model is used to extract multilayer feature maps. Then, the feature maps are stacked together, and a covariance matrix is calculated for the stacked features. Each entry of the resulting covariance matrix stands for the covariance of two different feature maps, which provides a natural and innovative way to exploit the complementary information provided by feature maps coming from different layers. Finally, the extracted covariance matrices are used as features for classification by a support vector machine. The experimental results, conducted on three challenging data sets, demonstrate that the proposed MSCP method can not only consistently outperform the corresponding single-layer model but also achieve better classification performance than other pretrained CNN-based scene classification methods. Numéro de notice : A2018-552 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2845668 Date de publication en ligne : 09/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2845668 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91640
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 6899 - 6910[article]Atmospheric artifacts correction with a covariance-weighted linear model over mountainous regions / Zhongbo Hu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Atmospheric artifacts correction with a covariance-weighted linear model over mountainous regions Type de document : Article/Communication Auteurs : Zhongbo Hu, Auteur ; Hongdong Fan, Auteur ; Jordi J. Mallorquí, Auteur Année de publication : 2018 Article en page(s) : pp 6995 - 70008 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] correction atmosphérique
[Termes IGN] image Sentinel-SAR
[Termes IGN] interferométrie différentielle
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] matrice de covariance
[Termes IGN] modèle linéaire
[Termes IGN] montagne
[Termes IGN] retard troposphérique
[Termes IGN] Tenerife
[Termes IGN] variogrammeRésumé : (auteur) Mitigating the atmospheric phase delay is one of the largest challenges faced by the differential synthetic aperture radar (SAR) interferometry community. Recently, many publications have studied correcting the stratified tropospheric phase delay by assuming a linear model between them and the topography. However, most of these studies have not considered the effect of turbulent atmospheric artifacts when adjusting the linear model to data. In this paper, we present an improved technique that minimizes the influence of the turbulent atmosphere in the model adjustment. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its atmospheric phase screen covariance estimated from an empirical variogram to reduce, in the model adjustment, the impact of pixel pairs with a significant turbulent atmosphere. The good performance of the proposed method has been validated with both the simulated and real Sentinel-1A SAR data in the mountainous area of Tenerife island, Spain. Numéro de notice : A2018- 553 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2846885 Date de publication en ligne : 17/07/2018 En ligne : http://dx.doi.org/ 10.1109/TGRS.2018.2846885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91652
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 6995 - 70008[article]Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning / Hailing Zhou in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning Type de document : Article/Communication Auteurs : Hailing Zhou, Auteur ; Lei Wei, Auteur ; Chee Peng Lim, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 7074 - 7085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image captée par drone
[Termes IGN] méthode robuste
[Termes IGN] modèle sac-de-mots
[Termes IGN] objet mobile
[Termes IGN] PMVS
[Termes IGN] SIFT (algorithme)
[Termes IGN] transformation de Radon
[Termes IGN] véhiculeRésumé : (auteur) This paper presents a novel approach to automatically detect and count cars in different aerial images, which can be satellite or unmanned aerial vehicle (UAV) images. Variations in satellite and/or UAV data make it particularly challenging to have a robust method that works properly on a variety of images. A solution based on the bag-of-words (BoW) model is explored in this paper due to its invariance characteristic and highly stable performance in object/scene categorization. Different from categorization tasks, vehicle detection needs to localize the positions of cars in images. To make BoW suitable for this purpose, we extensively improve the methodology in three aspects, namely, by introducing a recently proposed feature representation, i.e., the local steering kernel descriptor, adding spatial structure constraints, and developing an orientation aware scanning mechanism to produce detection with “one-window-one-car” results. Experiments are conducted on various aerial images with large variations, which consist of data from two public databases, e.g., the Overhead Imagery Research Data Set and Vehicle Detection in Aerial Imagery, as well as other satellite and UAV images. The results demonstrate the effectiveness and robustness of the proposed method. Compared with existing techniques, the proposed method is applicable to a wider range of aerial images. Numéro de notice : A2018-555 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2848243 Date de publication en ligne : 17/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2848243 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91654
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7074 - 7085[article]Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems / Jisung Geba Chang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems Type de document : Article/Communication Auteurs : Jisung Geba Chang, Auteur ; Maxim Shoshany, Auteur ; Yisok Oh, Auteur Année de publication : 2018 Article en page(s) : pp 7102 - 7108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] allométrie
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] bassin méditerranéen
[Termes IGN] biomasse
[Termes IGN] carte de la végétation
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] données de terrain
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] polarimétrie radar
[Termes IGN] zone aride
[Termes IGN] zone semi-arideRésumé : (auteur) Biomass estimation of eastern Mediterranean shrublands was investigated using PALSAR full- and dual-polarization L-band and Sentinel-1 dual-polarization C-band data. First, we conducted an empirical assessment of single and multiple regressions between polarized backscattering coefficients and shrubland biomass distribution along the climatic gradient between semiarid and arid regions. We then found that the PALSAR L-band HV-polarized backscattering coefficient has higher biomass information content than Sentinel-1 C-band data. Based on a theoretical volume scattering model and a semiempirical model, we propose a new polarimetric radar vegetation index (PRVI) that utilizes the degree of polarization and the cross-polarized backscattering coefficient. The relationship between the new index and the biomass was assessed with reference to normalized difference vegetation index-based biomass estimates calculated using Landsat imagery. The PRVI was found to have higher correlation with biomass compared with other radar polarization parameters, in general, and an existing radar vegetation index (RVI), in particular. Assessment of PRVI-based biomass predictions compared with allometric data extracted from air photographs, Lidar, and field data for 67 sites across the desert fringe zone indicated moderate performance with an RMSE of 0.329 kg/m 2 , while an RVI-based biomass estimation had an RMSE of 0.439 kg/m². Numéro de notice : A2018-553 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2848285 Date de publication en ligne : 03/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2848285 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91659
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7102 - 7108[article]Scene classification based on multiscale convolutional neural network / Yanfei Liu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Scene classification based on multiscale convolutional neural network Type de document : Article/Communication Auteurs : Yanfei Liu, Auteur ; Yanfei Zhong, Auteur ; Qianqing Qin, Auteur Année de publication : 2018 Article en page(s) : pp 7109 - 7121 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multidimensionnelle
[Termes IGN] image satellite
[Termes IGN] mesure de similitude
[Termes IGN] modèle orienté objetRésumé : (auteur) With the large amount of high-spatial resolution images now available, scene classification aimed at obtaining high-level semantic concepts has drawn great attention. The convolutional neural networks (CNNs), which are typical deep learning methods, have widely been studied to automatically learn features for the images for scene classification. However, scene classification based on CNNs is still difficult due to the scale variation of the objects in remote sensing imagery. In this paper, a multiscale CNN (MCNN) framework is proposed to solve the problem. In MCNN, a network structure containing dual branches of a fixed-scale net (F-net) and a varied-scale net (V-net) is constructed and the parameters are shared by the F-net and V-net. The images and their rescaled images are fed into the F-net and V-net, respectively, allowing us to simultaneously train the shared network weights on multiscale images. Furthermore, to ensure that the features extracted from MCNN are scale invariant, a similarity measure layer is added to MCNN, which forces the two feature vectors extracted from the image and its corresponding rescaled image to be as close as possible in the training phase. To demonstrate the effectiveness of the proposed method, we compared the results obtained using three widely used remote sensing data sets: the UC Merced data set, the aerial image data set, and the google data set of SIRI-WHU. The results confirm that the proposed method performs significantly better than the other state-of-the-art scene classification methods. Numéro de notice : A2018-556 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2848473 Date de publication en ligne : 26/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2848473 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91660
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7109 - 7121[article]Polarization orientation angle and polarimetric SAR scattering characteristics of steep terrain / Jong-Sen Lee in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Polarization orientation angle and polarimetric SAR scattering characteristics of steep terrain Type de document : Article/Communication Auteurs : Jong-Sen Lee, Auteur ; Thomas L. Ainsworth, Auteur ; Yanting Wang, Auteur Année de publication : 2018 Article en page(s) : pp 7272 - 7281 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] angle de visée
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] constante diélectrique
[Termes IGN] données polarimétriques
[Termes IGN] escarpement
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] image TOPSAR
[Termes IGN] modèle de diffusion du rayonnement
[Termes IGN] montagne
[Termes IGN] pente
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation croisée
[Termes IGN] réflectance spectrale
[Termes IGN] rétrodiffusion de Bragg
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Polarization orientation angle (POA) is an important parameter of polarimetric radar scattering from slopes in mountainous region. It is known that surface tilted in azimuth direction and buildings not aligned in the along-track direction induce polarization orientation shifts. Earlier research has established orientation angle as a function of radar imaging geometry and surface slopes, and that POA estimation can be derived from polarimetric radar data using circular polarization. Besides these, polarimetric scattering from steep slopes and its relation to POA remain not well understood. In this paper, we address these issues by adopting a tilted surface model based on Bragg scattering. We have found that, as the azimuthal slope increases, |VV| decreases at a faster rate than |HH|, they become equal, when POA is ±45°, and |HH| > |VV| afterward. In other words, the Pauli component, |HH-VV| reduced to zero at POA = ± 45°, and the typical Bragg scattering characteristics of |VV| > |HH| does not apply when steep slope is present inducing |POA| > 45°. Furthermore, the cross-pol |HV| does not always increase with azimuth slope but also reaches a maximum then decreases to zero. In addition, we investigate the effect of soil moisture on polarimetric SAR (PolSAR) scattering characteristics of steep terrain and the effect of vegetation over surface on POA estimation. The latter is demonstrated with NASA/JPL TOPSAR L-band PolSAR data and C-band InSAR data. Another significance of this paper is that it provides a direct and rigorous derivation of POA equations. The earlier version was derived from a different concept. Numéro de notice : A2018-557 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2849931 Date de publication en ligne : 01/08/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2849931 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91662
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7272 - 7281[article]Automatic building rooftop extraction from aerial images via hierarchical RGB-D priors / Shibiao Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Automatic building rooftop extraction from aerial images via hierarchical RGB-D priors Type de document : Article/Communication Auteurs : Shibiao Xu, Auteur ; Xingjia Pan, Auteur ; Er Li, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 7369 - 7387 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] itération
[Termes IGN] scène urbaine
[Termes IGN] segmentation d'image
[Termes IGN] segmentation hiérarchique
[Termes IGN] toit
[Termes IGN] zone saillante 3DRésumé : (auteur) Accurate building rooftop extraction from high-resolution aerial images is of crucial importance in a wide range of applications. Owing to the varying appearance and large-scale range of scene objects, especially for building rooftops in different scales and heights, single-scale or individual prior-based extraction technique is insufficient in pursuing efficient, generic, and accurate extraction results. The trend toward integrating multiscale or several cue techniques appears to be the best way; thus, such integration is the focus of this paper. We first propose a novel salient rooftop detector integrating four correlative RGB-D priors (depth cue, uniqueness prior, shape prior, and transition surface prior) for improved rooftop extraction to address the preceding complex issues mentioned. Then, these correlative cues are computed from image layers created by our multilevel segmentation and further fused into the state-of-the-art high-order conditional random field (CRF) framework to locate the rooftop. Finally, an iterative optimization strategy is applied for high-quality solving, which can robustly handle varying appearance of building rooftops. Performance evaluations in the SZTAKI-INRIA benchmark data sets show that our method outperforms the traditional color-based algorithm and the original high-order CRF algorithm and its variants. The proposed algorithm is also evaluated and found to produce consistently satisfactory results for various large-scale, real-world data sets. Numéro de notice : A2018-558 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2850972 Date de publication en ligne : 26/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2850972 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91664
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7369 - 7387[article]