Détail de l'auteur
Auteur F. Melgani |
Documents disponibles écrits par cet auteur (8)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detecting cars in UAV images with a catalog-based approach / Thomas Moranduzzo in IEEE Transactions on geoscience and remote sensing, vol 52 n° 10 tome 1 (October 2014)
[article]
Titre : Detecting cars in UAV images with a catalog-based approach Type de document : Article/Communication Auteurs : Thomas Moranduzzo, Auteur ; F. Melgani, Auteur Année de publication : 2014 Article en page(s) : pp 6356 - 6367 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] catalogue
[Termes IGN] détection d'objet
[Termes IGN] extraction automatique
[Termes IGN] histogramme
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement automatique de données
[Termes IGN] véhicule automobileRésumé : (Auteur) This paper presents a new method for the automatic detection of cars in unmanned aerial vehicle (UAV) images acquired over urban contexts. UAV images are characterized by an extremely high spatial resolution, which makes the detection of cars particularly challenging. The proposed method starts with a screening operation in which the asphalted areas are identified in order to make the car detection process faster and more robust. Subsequently, filtering operations in the horizontal and vertical directions are performed to extract histogram-of-gradient features and to yield a preliminary detection of cars after the computation of a similarity measure with a catalog of cars used as reference. Three different strategies for computing the similarity are investigated. Successively, for the image points identified as potential cars, an orientation value is computed by searching for the highest similarity value in 36 possible directions. The last step is devoted to the merging of the points which belong to the same car because it is likely that a car is identified by more than one point due to the extremely high resolution of UAV images. As outcomes, the proposed method provides the number of cars in the image, as well as the position and orientation for each of them. Interesting experimental results, conducted on a set of real UAV images acquired over an urban area, are presented and discussed. Numéro de notice : A2014-484 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2296351 En ligne : https://doi.org/10.1109/TGRS.2013.2296351 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=74067
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 10 tome 1 (October 2014) . - pp 6356 - 6367[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014101A RAB Revue Centre de documentation En réserve L003 Disponible Active learning methods for biophysical parameter estimation / Edoardo Pasolli in IEEE Transactions on geoscience and remote sensing, vol 50 n° 10 Tome 2 (October 2012)
[article]
Titre : Active learning methods for biophysical parameter estimation Type de document : Article/Communication Auteurs : Edoardo Pasolli, Auteur ; F. Melgani, Auteur ; N. Alajlan, Auteur ; B. Yakoub, Auteur Année de publication : 2012 Article en page(s) : pp 4071 - 4084 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] algorithme de Gauss
[Termes IGN] apprentissage automatique
[Termes IGN] chlorophylle
[Termes IGN] régression
[Termes IGN] séparateur à vaste marge
[Termes IGN] variable biophysique (végétation)Résumé : (Auteur) In this paper, we face the problem of collecting training samples for regression problems under an active learning perspective. In particular, we propose various active learning strategies specifically developed for regression approaches based on Gaussian processes (GPs) and support vector machines (SVMs). For GP regression, the first two strategies are based on the idea of adding samples that are dissimilar from the current training samples in terms of covariance measure, while the third one uses a pool of regressors in order to select the samples with the greater disagreements between the different regressors. Finally, the last strategy exploits an intrinsic GP regression outcome to pick up the most difficult and hence interesting samples to label. For SVM regression, the method based on the pool of regressors and two additional strategies based on the selection of the samples distant from the current support vectors in the kernel-induced feature space are proposed. The experimental results obtained on simulated and real data sets show that the proposed strategies exhibit a good capability to select samples that are significant for the regression process, thus opening the way to the active learning approach for remote-sensing regression problems. Numéro de notice : A2012-528 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2187906 Date de publication en ligne : 17/04/2012 En ligne : https://doi.org/10.1109/TGRS.2012.2187906 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31974
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 10 Tome 2 (October 2012) . - pp 4071 - 4084[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012101B MANQUANT Revue Centre de documentation Indéterminé Disponible A complete processing chain for shadow detection and reconstruction in VHR images / L. Lorenzi in IEEE Transactions on geoscience and remote sensing, vol 50 n° 9 (October 2012)
[article]
Titre : A complete processing chain for shadow detection and reconstruction in VHR images Type de document : Article/Communication Auteurs : L. Lorenzi, Auteur ; F. Melgani, Auteur ; Grégoire Mercier, Auteur Année de publication : 2012 Article en page(s) : pp 3440 - 3452 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'ombre
[Termes IGN] image à très haute résolution
[Termes IGN] interpolation linéaire
[Termes IGN] reconstruction d'image
[Termes IGN] régression linéaireRésumé : (Auteur) The presence of shadows in very high resolution (VHR) images can represent a serious obstacle for their full exploitation. This paper proposes to face this problem as a whole through the proposal of a complete processing chain, which relies on various advanced image processing and pattern recognition tools. The first key point of the chain is that shadow areas are not only detected but also classified to allow their customized compensation. The detection and classification tasks are implemented by means of the state-of-the-art support vector machine approach. A quality check mechanism is integrated in order to reduce subsequent misreconstruction problems. The reconstruction is based on a linear regression method to compensate shadow regions by adjusting the intensities of the shaded pixels according to the statistical characteristics of the corresponding nonshadow regions. Moreover, borders are explicitly handled by making use of adaptive morphological filters and linear interpolation for the prevention of possible border artifacts in the reconstructed image. Experimental results obtained on three VHR images representing different shadow conditions are reported, discussed, and compared with two other reconstruction techniques. Numéro de notice : A2012-450 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2012.2183876 Date de publication en ligne : 05/03/2012 En ligne : https://doi.org/10.1109/TGRS.2012.2183876 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31896
in IEEE Transactions on geoscience and remote sensing > vol 50 n° 9 (October 2012) . - pp 3440 - 3452[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2012091 RAB Revue Centre de documentation En réserve L003 Exclu du prêt Contextual reconstruction of cloud-contaminated multitemporal multispectral image / F. Melgani in IEEE Transactions on geoscience and remote sensing, vol 44 n° 2 (February 2006)
[article]
Titre : Contextual reconstruction of cloud-contaminated multitemporal multispectral image Type de document : Article/Communication Auteurs : F. Melgani, Auteur Année de publication : 2006 Article en page(s) : pp 442 - 455 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] classification non dirigée
[Termes IGN] filtrage du rayonnement
[Termes IGN] image Landsat-ETM+
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] nébulosité
[Termes IGN] prévision linéaire
[Termes IGN] prévision non-linéaire
[Termes IGN] prise en compte du contexte
[Termes IGN] reconstruction d'imageRésumé : (Auteur) The frequent presence of clouds in passive remotely sensed imagery severely limits its regular exploitation in various application fields. Thus, the removal of cloud cover from this imagery represents an important preprocessing task consisting in the reconstruction of cloud-contaminated data. The intent of this study is to propose two novel general methods for the reconstruction of areas obscured by clouds in a sequence of multitemporal multispectral images. Given a cloud-contaminated image of the sequence, each area of missing measurements is reconstructed through an unsupervised contextual prediction process that reproduces the local spectro-temporal relationships between the considered image and an opportunely selected subset of the remaining temporal images. In the first method, the contextual prediction process is implemented by means of an ensemble of linear predictors, each trained over a local multitemporal region that is spectrally homogeneous in each temporal image of the selected subset. In order to obtain such regions, each temporal image is locally classified by an unsupervised classifier based on the expectation-maximization (EM) algorithm. In the second method, the local spectro-temporal relationships are reproduced by a single nonlinear predictor based on the support vector machines (SVM) approach. To illustrate the performance of the two proposed methods, an experimental analysis on a sequence of three temporal images acquired by the Landsat-7 Enhanced Thematic Mapper Plus sensor over a total period of four months is reported and discussed. It includes a detailed simulation study that aims at assessing with different reconstruction quality criteria the accuracy of the methods in different qualitative and quantitative cloud contamination conditions. Compared with two techniques based on compositing algorithms for cloud removal, the proposed methods show a clear superiority, which makes them a promising and useful tool in solving the considered problem, whose great complexity is commensurate with its practical importance. Numéro de notice : A2006-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2005.861929 En ligne : https://doi.org/10.1109/TGRS.2005.861929 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27853
in IEEE Transactions on geoscience and remote sensing > vol 44 n° 2 (February 2006) . - pp 442 - 455[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-06021 RAB Revue Centre de documentation En réserve L003 Disponible An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images / Y. Bazi in IEEE Transactions on geoscience and remote sensing, vol 43 n° 4 (April 2005)
[article]
Titre : An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images Type de document : Article/Communication Auteurs : Y. Bazi, Auteur ; Lorenzo Bruzzone, Auteur ; F. Melgani, Auteur Année de publication : 2005 Article en page(s) : pp 874 - 887 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] chatoiement
[Termes IGN] détection de changement
[Termes IGN] distribution de Gauss
[Termes IGN] filtrage numérique d'image
[Termes IGN] image ERS-SAR
[Termes IGN] image multitemporelle
[Termes IGN] image radar
[Termes IGN] seuillage d'imageRésumé : (Auteur) In this paper, we present a novel automatic and unsupervised change-detection approach specifically oriented to the analysis of multitemporal single-channel single-polarization synthetic aperture radar (SAR) images. This approach is based on a closed-loop process made up of three main steps: 1) a novel preprocessing based on a controlled adaptive iterative filtering; 2) a comparison between multitemporal images carried out according to a standard log-ratio operator; and 3) a novel approach to the automatic analysis of the log-ratio image for generating the change-detection map. The first step aims at reducing the speckle noise in a controlled way in order to maximize the discrimination capability between changed and unchanged classes. In the second step, the two filtered multitemporal images are compared to generate a log-ratio image that contains explicit information on changed areas. The third step produces the change-detection map according to a thresholding procedure based on a reformulation of the Kittler-Illingworth (KI) threshold selection criterion. In particular, the modified KI criterion is derived under the generalized Gaussian assumption for modeling the distributions of changed and unchanged classes. This parametric model was chosen because it is capable of better fitting the conditional densities of classes in the log-ratio image. In order to control the filtering step and, accordingly, the effects of the filtering process on change-detection accuracy, we propose to identify automatically the optimal number of despeckling filter iterations [Step 1)] by analyzing the behavior of the modified KI criterion. This results in a completely automatic and self-consistent change-detection approach that avoids the use of empirical methods for the selection of the best number of filtering iterations. Experiments carried out on two sets of multitemporal images (characterized by different levels of speckle noise) acquired by the European Remote Sensing 2 satellite SAR sensor confirm the effectiveness of the proposed unsupervised approach, which results in change-detection accuracies very similar to those that can be achieved by a manual supervised thresholding. Numéro de notice : A2005-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2004.842441 En ligne : https://doi.org/10.1109/TGRS.2004.842441 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27331
in IEEE Transactions on geoscience and remote sensing > vol 43 n° 4 (April 2005) . - pp 874 - 887[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-05042 RAB Revue Centre de documentation En réserve L003 Disponible Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data / Lorenzo Bruzzone in IEEE Transactions on geoscience and remote sensing, vol 43 n° 1 (January 2005)PermalinkClassification of hyperspectral remote sensing images with support vector machines / F. Melgani in IEEE Transactions on geoscience and remote sensing, vol 42 n° 8 (August 2004)PermalinkA Markov random field approach to spatio-temporal contextual image classification / F. Melgani in IEEE Transactions on geoscience and remote sensing, vol 41 n° 11 (November 2003)Permalink